SELECT A SUBJECT
2017 soldiers were lined up in a single file. The commander ordered them to number off 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, $\dots$ starting from the first soldier. He then ordered them to number off 1, 2, 3, 4, 1, 2, 3, 4, 1, $\dots$ starting from the last soldier. How many soldiers had the same number both times?
Sorry. Please check the correct answer below.
Consider the following table where the first row stands for the first numbering of the soldiers \begin{equation} \begin{array}{*{15}{|c}|c|} 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5\\\hline 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 \end{array} \end{equation} \begin{equation} \begin{array}{*{13}{|c}|c|} 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & \cdots \\\hline 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & \cdots \end{array} \end{equation} \begin{align*} 2017 \div 5 &= 403 \text{R} 2 \\ 2017 \div 4 &= 504 \text{R} 1 \\ \end{align*} Every 20 soldiers there are 4 with the same numbers. \begin{equation} 2017 \div 20 = 100 \text{R} 17 \end{equation} So, $100\times 4 = 400$. But there are 4 more soldiers with the same numbers amongst the last 17 soldiers. So, $400+4=404$
Yay! Your are right.
Consider the following table where the first row stands for the first numbering of the soldiers \begin{equation} \begin{array}{*{15}{|c}|c|} 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5\\\hline 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 \end{array} \end{equation} \begin{equation} \begin{array}{*{13}{|c}|c|} 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & \cdots \\\hline 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & \cdots \end{array} \end{equation} \begin{align*} 2017 \div 5 &= 403 \text{R} 2 \\ 2017 \div 4 &= 504 \text{R} 1 \\ \end{align*} Every 20 soldiers there are 4 with the same numbers. \begin{equation} 2017 \div 20 = 100 \text{R} 17 \end{equation} So, $100\times 4 = 400$. But there are 4 more soldiers with the same numbers amongst the last 17 soldiers. So, $400+4=404$
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{44}{63} \\ &= 21\frac{17}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{55}{63} \\ &= 26\frac{37}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{55}{63} \\ &= 26\frac{37}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{22}{21} \\ &= 31\frac{19}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{22}{21} \\ &= 31\frac{19}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{11}{9} \\ &= 37\frac{2}{9} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{11}{9} \\ &= 37\frac{2}{9} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{88}{63} \\ &= 42\frac{34}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{88}{63} \\ &= 42\frac{34}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{11}{7} \\ &= 47\frac{6}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{11}{7} \\ &= 47\frac{6}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{110}{63} \\ &= 53\frac{11}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{110}{63} \\ &= 53\frac{11}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=5^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{121}{63} \\ &= 58\frac{31}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{5}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{72}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{121}{63} \\ &= 58\frac{31}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{88}{105} \\ &= 21\frac{43}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{88}{105} \\ &= 21\frac{43}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{22}{21} \\ &= 26\frac{16}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{22}{21} \\ &= 26\frac{16}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{44}{35} \\ &= 32\frac{4}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{44}{35} \\ &= 32\frac{4}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{22}{15} \\ &= 37\frac{7}{15} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{22}{15} \\ &= 37\frac{7}{15} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{176}{105} \\ &= 42\frac{86}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{176}{105} \\ &= 42\frac{86}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{66}{35} \\ &= 48\frac{6}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{66}{35} \\ &= 48\frac{6}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{44}{21} \\ &= 53\frac{11}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{44}{21} \\ &= 53\frac{11}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=6^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{242}{105} \\ &= 58\frac{92}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{6}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{60}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{242}{105} \\ &= 58\frac{92}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{352}{315} \\ &= 21\frac{31}{45} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{352}{315} \\ &= 21\frac{31}{45} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{88}{63} \\ &= 27\frac{1}{9} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{88}{63} \\ &= 27\frac{1}{9} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{176}{105} \\ &= 32\frac{8}{15} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{176}{105} \\ &= 32\frac{8}{15} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{88}{45} \\ &= 37\frac{43}{45} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{88}{45} \\ &= 37\frac{43}{45} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{704}{315} \\ &= 43\frac{17}{45} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{704}{315} \\ &= 43\frac{17}{45} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{88}{35} \\ &= 48\frac{4}{5} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{88}{35} \\ &= 48\frac{4}{5} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{176}{63} \\ &= 54\frac{2}{9} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{176}{63} \\ &= 54\frac{2}{9} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=8^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{968}{315} \\ &= 59\frac{29}{45} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{8}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{45}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{968}{315} \\ &= 59\frac{29}{45} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{44}{35} \\ &= 21\frac{29}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{44}{35} \\ &= 21\frac{29}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{11}{7} \\ &= 27\frac{2}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{11}{7} \\ &= 27\frac{2}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{66}{35} \\ &= 32\frac{26}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{66}{35} \\ &= 32\frac{26}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{11}{5} \\ &= 38\frac{1}{5} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{11}{5} \\ &= 38\frac{1}{5} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{88}{35} \\ &= 43\frac{23}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{88}{35} \\ &= 43\frac{23}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{99}{35} \\ &= 49\frac{4}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{99}{35} \\ &= 49\frac{4}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{22}{7} \\ &= 54\frac{4}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{22}{7} \\ &= 54\frac{4}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=9^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{121}{35} \\ &= 60\frac{1}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{9}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{40}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{121}{35} \\ &= 60\frac{1}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{88}{63} \\ &= 21\frac{61}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{88}{63} \\ &= 21\frac{61}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{110}{63} \\ &= 27\frac{29}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{110}{63} \\ &= 27\frac{29}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{44}{21} \\ &= 32\frac{20}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{44}{21} \\ &= 32\frac{20}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{22}{9} \\ &= 38\frac{4}{9} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{22}{9} \\ &= 38\frac{4}{9} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{176}{63} \\ &= 43\frac{59}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{176}{63} \\ &= 43\frac{59}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{22}{7} \\ &= 49\frac{3}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{22}{7} \\ &= 49\frac{3}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{220}{63} \\ &= 54\frac{58}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{220}{63} \\ &= 54\frac{58}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=10^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{242}{63} \\ &= 60\frac{26}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{10}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{36}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{242}{63} \\ &= 60\frac{26}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{176}{105} \\ &= 22\frac{26}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{176}{105} \\ &= 22\frac{26}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{44}{21} \\ &= 27\frac{17}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{44}{21} \\ &= 27\frac{17}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{88}{35} \\ &= 33\frac{13}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{88}{35} \\ &= 33\frac{13}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{44}{15} \\ &= 38\frac{14}{15} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{44}{15} \\ &= 38\frac{14}{15} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{352}{105} \\ &= 44\frac{52}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{352}{105} \\ &= 44\frac{52}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{132}{35} \\ &= 50\frac{2}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{132}{35} \\ &= 50\frac{2}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{88}{21} \\ &= 55\frac{13}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{88}{21} \\ &= 55\frac{13}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=12^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{484}{105} \\ &= 61\frac{19}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{12}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{30}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{484}{105} \\ &= 61\frac{19}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{44}{21} \\ &= 22\frac{2}{3} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{44}{21} \\ &= 22\frac{2}{3} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{55}{21} \\ &= 28\frac{1}{3} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{55}{21} \\ &= 28\frac{1}{3} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{22}{7} \\ &= 34 \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{22}{7} \\ &= 34 \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{11}{3} \\ &= 39\frac{2}{3} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{11}{3} \\ &= 39\frac{2}{3} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{88}{21} \\ &= 45\frac{1}{3} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{88}{21} \\ &= 45\frac{1}{3} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{33}{7} \\ &= 51 \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{33}{7} \\ &= 51 \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{110}{21} \\ &= 56\frac{2}{3} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{110}{21} \\ &= 56\frac{2}{3} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=15^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{121}{21} \\ &= 62\frac{1}{3} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{15}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{24}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{121}{21} \\ &= 62\frac{1}{3} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{88}{35} \\ &= 23\frac{3}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{88}{35} \\ &= 23\frac{3}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{22}{7} \\ &= 28\frac{6}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{22}{7} \\ &= 28\frac{6}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{132}{35} \\ &= 34\frac{22}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{132}{35} \\ &= 34\frac{22}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{22}{5} \\ &= 40\frac{2}{5} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{22}{5} \\ &= 40\frac{2}{5} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{176}{35} \\ &= 46\frac{6}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{176}{35} \\ &= 46\frac{6}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{198}{35} \\ &= 51\frac{33}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{198}{35} \\ &= 51\frac{33}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{44}{7} \\ &= 57\frac{5}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{44}{7} \\ &= 57\frac{5}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=18^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{242}{35} \\ &= 63\frac{17}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{18}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{20}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{242}{35} \\ &= 63\frac{17}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{176}{63} \\ &= 23\frac{23}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{176}{63} \\ &= 23\frac{23}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{220}{63} \\ &= 29\frac{13}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{220}{63} \\ &= 29\frac{13}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{88}{21} \\ &= 35\frac{1}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{88}{21} \\ &= 35\frac{1}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{44}{9} \\ &= 40\frac{8}{9} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{44}{9} \\ &= 40\frac{8}{9} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{352}{63} \\ &= 46\frac{46}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{352}{63} \\ &= 46\frac{46}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{44}{7} \\ &= 52\frac{4}{7} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{44}{7} \\ &= 52\frac{4}{7} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{440}{63} \\ &= 58\frac{26}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{440}{63} \\ &= 58\frac{26}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=20^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{484}{63} \\ &= 64\frac{16}{63} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{20}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{18}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{484}{63} \\ &= 64\frac{16}{63} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 8 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{352}{105} \\ &= 23\frac{97}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 8+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 8+\frac{1}{2}\times 2\times \frac{22}{7}\times 4 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 8 \\ &= 8+\frac{88}{7}+\frac{352}{105} \\ &= 23\frac{97}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 10 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{88}{21} \\ &= 29\frac{19}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 10+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 10+\frac{1}{2}\times 2\times \frac{22}{7}\times 5 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 10 \\ &= 10+\frac{110}{7}+\frac{88}{21} \\ &= 29\frac{19}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 12 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{176}{35} \\ &= 35\frac{31}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 12+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 12+\frac{1}{2}\times 2\times \frac{22}{7}\times 6 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 12 \\ &= 12+\frac{132}{7}+\frac{176}{35} \\ &= 35\frac{31}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 14 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{88}{15} \\ &= 41\frac{13}{15} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 14+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 14+\frac{1}{2}\times 2\times \frac{22}{7}\times 7 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 14 \\ &= 14+22+\frac{88}{15} \\ &= 41\frac{13}{15} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 16 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{704}{105} \\ &= 47\frac{89}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 16+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 16+\frac{1}{2}\times 2\times \frac{22}{7}\times 8 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 16 \\ &= 16+\frac{176}{7}+\frac{704}{105} \\ &= 47\frac{89}{105} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 18 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{264}{35} \\ &= 53\frac{29}{35} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 18+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 18+\frac{1}{2}\times 2\times \frac{22}{7}\times 9 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 18 \\ &= 18+\frac{198}{7}+\frac{264}{35} \\ &= 53\frac{29}{35} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 20 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{176}{21} \\ &= 59\frac{17}{21} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 20+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 20+\frac{1}{2}\times 2\times \frac{22}{7}\times 10 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 20 \\ &= 20+\frac{220}{7}+\frac{176}{21} \\ &= 59\frac{17}{21} \text{ cm} \end{align*}
The figure shows a semicircle and a sector overlapping each other. Find the perimeter of the shaded region if $\theta=24^\circ$ and diameter $=$ 22 cm. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{968}{105} \\ &= 65\frac{83}{105} \text{ cm} \end{align*}
Yay! Your are right.
\begin{align*} &\phantom{=} 22+\frac{1}{2}\times 2 \times \pi \times r + \frac{24}{360}\times 2 \times \pi \times r_1 \\ &= 22+\frac{1}{2}\times 2\times \frac{22}{7}\times 11 + \frac{1}{15}\times 2 \times \frac{22}{7} \times 22 \\ &= 22+\frac{242}{7}+\frac{968}{105} \\ &= 65\frac{83}{105} \text{ cm} \end{align*}
Three identical circles of radii 1 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 1 \times 1 = \frac{22}{2} \end{equation*} \begin{equation} \frac{11}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 1 \times 1 = \frac{22}{2} \end{equation*} \begin{equation} \frac{11}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 2 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 2 \times 2 = \frac{88}{2} \end{equation*} \begin{equation} \frac{44}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 2 \times 2 = \frac{88}{2} \end{equation*} \begin{equation} \frac{44}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 3 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 3 \times 3 = \frac{198}{2} \end{equation*} \begin{equation} \frac{99}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 3 \times 3 = \frac{198}{2} \end{equation*} \begin{equation} \frac{99}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 4 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 4 \times 4 = \frac{352}{2} \end{equation*} \begin{equation} \frac{176}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 4 \times 4 = \frac{352}{2} \end{equation*} \begin{equation} \frac{176}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 5 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 5 \times 5 = \frac{550}{2} \end{equation*} \begin{equation} \frac{275}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 5 \times 5 = \frac{550}{2} \end{equation*} \begin{equation} \frac{275}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 6 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 6 \times 6 = \frac{792}{2} \end{equation*} \begin{equation} \frac{396}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 6 \times 6 = \frac{792}{2} \end{equation*} \begin{equation} \frac{396}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 7 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 7 \times 7 = \frac{154}{2} \end{equation*} \begin{equation} 77\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 7 \times 7 = \frac{154}{2} \end{equation*} \begin{equation} 77\text{ cm}^2 \end{equation}
Three identical circles of radii 8 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 8 \times 8 = \frac{1408}{2} \end{equation*} \begin{equation} \frac{704}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 8 \times 8 = \frac{1408}{2} \end{equation*} \begin{equation} \frac{704}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 9 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 9 \times 9 = \frac{1782}{2} \end{equation*} \begin{equation} \frac{891}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 9 \times 9 = \frac{1782}{2} \end{equation*} \begin{equation} \frac{891}{7}\text{ cm}^2 \end{equation}
Three identical circles of radii 10 cm intersect through their centers as shown in the figure. Find the area of the shaded region. Take $\pi=\frac{22}{7}$.
Sorry. Please check the correct answer below.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 10 \times 10 = \frac{2200}{2} \end{equation*} \begin{equation} \frac{1100}{7}\text{ cm}^2 \end{equation}
Yay! Your are right.
By cutting and pasting, we obtain a figure of a semi-circle \begin{equation*} \frac{1}{2}\times \frac{22}{7} \times 10 \times 10 = \frac{2200}{2} \end{equation*} \begin{equation} \frac{1100}{7}\text{ cm}^2 \end{equation}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 1 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 2\text{ cm},\ 3\text{ cm}, \ 4\text{ cm}, \ 5\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[2^2+3^2+4^2+5^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{297}{7} \\ &= 42\frac{3}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 2\text{ cm},\ 3\text{ cm}, \ 4\text{ cm}, \ 5\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[2^2+3^2+4^2+5^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{297}{7} \\ &= 42\frac{3}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 4 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 4\text{ cm},\ 6\text{ cm}, \ 8\text{ cm}, \ 10\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[4^2+6^2+8^2+10^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 2^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{4}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{1188}{7} \\ &= 169\frac{5}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 4\text{ cm},\ 6\text{ cm}, \ 8\text{ cm}, \ 10\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[4^2+6^2+8^2+10^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 2^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{4}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{1188}{7} \\ &= 169\frac{5}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 9 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 6\text{ cm},\ 9\text{ cm}, \ 12\text{ cm}, \ 15\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[6^2+9^2+12^2+15^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 3^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{9}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{2673}{7} \\ &= 381\frac{6}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 6\text{ cm},\ 9\text{ cm}, \ 12\text{ cm}, \ 15\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[6^2+9^2+12^2+15^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 3^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{9}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{2673}{7} \\ &= 381\frac{6}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 16 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 8\text{ cm},\ 12\text{ cm}, \ 16\text{ cm}, \ 20\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[8^2+12^2+16^2+20^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 4^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{16}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{4752}{7} \\ &= 678\frac{6}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 8\text{ cm},\ 12\text{ cm}, \ 16\text{ cm}, \ 20\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[8^2+12^2+16^2+20^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 4^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{16}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{4752}{7} \\ &= 678\frac{6}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 25 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 10\text{ cm},\ 15\text{ cm}, \ 20\text{ cm}, \ 25\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[10^2+15^2+20^2+25^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 5^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{25}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{7425}{7} \\ &= 1060\frac{5}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 10\text{ cm},\ 15\text{ cm}, \ 20\text{ cm}, \ 25\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[10^2+15^2+20^2+25^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 5^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{25}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{7425}{7} \\ &= 1060\frac{5}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 36 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 12\text{ cm},\ 18\text{ cm}, \ 24\text{ cm}, \ 30\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[12^2+18^2+24^2+30^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 6^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{36}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{10692}{7} \\ &= 1527\frac{3}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 12\text{ cm},\ 18\text{ cm}, \ 24\text{ cm}, \ 30\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[12^2+18^2+24^2+30^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 6^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{36}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{10692}{7} \\ &= 1527\frac{3}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 49 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 14\text{ cm},\ 21\text{ cm}, \ 28\text{ cm}, \ 35\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[14^2+21^2+28^2+35^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 7^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{49}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= 2079 \\ &= 2079 \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 14\text{ cm},\ 21\text{ cm}, \ 28\text{ cm}, \ 35\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[14^2+21^2+28^2+35^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 7^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{49}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= 2079 \\ &= 2079 \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 64 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 16\text{ cm},\ 24\text{ cm}, \ 32\text{ cm}, \ 40\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[16^2+24^2+32^2+40^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 8^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{64}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{19008}{7} \\ &= 2715\frac{3}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 16\text{ cm},\ 24\text{ cm}, \ 32\text{ cm}, \ 40\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[16^2+24^2+32^2+40^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 8^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{64}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{19008}{7} \\ &= 2715\frac{3}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 81 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 18\text{ cm},\ 27\text{ cm}, \ 36\text{ cm}, \ 45\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[18^2+27^2+36^2+45^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 9^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{81}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{24057}{7} \\ &= 3436\frac{5}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 18\text{ cm},\ 27\text{ cm}, \ 36\text{ cm}, \ 45\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[18^2+27^2+36^2+45^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 9^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{81}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{24057}{7} \\ &= 3436\frac{5}{7} \text{ cm}^2 \end{align*}
The area of a circle is given as $\pi r^2$, where $\pi=\frac{22}{7}$ or $3.14$. Find the area of the shaded regions in the figure, given that the area of square is 100 cm$^2$.
Sorry. Please check the correct answer below.
The 4 radii are \begin{equation} 20\text{ cm},\ 30\text{ cm}, \ 40\text{ cm}, \ 50\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[20^2+30^2+40^2+50^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 10^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{100}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{29700}{7} \\ &= 4242\frac{6}{7} \text{ cm}^2 \end{align*}
Yay! Your are right.
The 4 radii are \begin{equation} 20\text{ cm},\ 30\text{ cm}, \ 40\text{ cm}, \ 50\text{ cm} \end{equation} Area shaded: \begin{align*} & \frac{1}{4}\pi\big[20^2+30^2+40^2+50^2+\big] \\ &= \frac{1}{4}\times \frac{22}{7} \times 10^2 \times [2^2+3^2+4^2+5^2] \\ &= \frac{100}{4}\times \frac{22}{7} \times [4+9+16+25] \\ &= \frac{29700}{7} \\ &= 4242\frac{6}{7} \text{ cm}^2 \end{align*}
2024 © All Rights Reserved. Privacy Policy | Terms of Service
Select level
Select subject