SELECT A SUBJECT
Find the value of $1-2+3-4+\cdots+2015-2016+2017$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2016+2017) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1\\ -4+5 &= 5-4 = 1\\ & \hspace{2.5mm} \vdots \\ \ -2016 &+ 2017 = 1 \end{align*} \begin{equation*} (2016\div 2)\times 1 + 1 = 1009 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2016+2017) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1\\ -4+5 &= 5-4 = 1\\ & \hspace{2.5mm} \vdots \\ \ -2016 &+ 2017 = 1 \end{align*} \begin{equation*} (2016\div 2)\times 1 + 1 = 1009 \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2017}\right)\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2016}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2017}\right)\left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2016}\right) \end{align*}
Sorry. Please check the correct answer below.
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2007}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2016}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2017} \end{equation*}
Given that $$S=\dfrac{1}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\cdots+\frac{1}{2017}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2008}$ \begin{equation} \frac{1}{\frac{10}{2008}} = 200.8 \end{equation} assume all to be $\frac{1}{2017}$ \begin{equation} \frac{1}{\frac{10}{2017}}=201.7 \end{equation} \begin{equation} 200.8 < S < 201.7 \end{equation} $c=7$.
Yay! Your are right.
Assume all to be $\frac{1}{2008}$ \begin{equation} \frac{1}{\frac{10}{2008}} = 200.8 \end{equation} assume all to be $\frac{1}{2017}$ \begin{equation} \frac{1}{\frac{10}{2017}}=201.7 \end{equation} \begin{equation} 200.8 < S < 201.7 \end{equation} $c=7$.
Find the value of $1-2+3-4+\cdots+1907-1908+1909$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1908+1909) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1908 &+ 1909 = 1 \end{align*} \begin{equation*} (1908\div 2)\times 1 + 1 = 955 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1908+1909) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1908 &+ 1909 = 1 \end{align*} \begin{equation*} (1908\div 2)\times 1 + 1 = 955 \end{equation*}
Find the value of $1-2+3-4+\cdots+1915-1916+1917$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1916+1917) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1916 &+ 1917 = 1 \end{align*} \begin{equation*} (1916\div 2)\times 1 + 1 = 959 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1916+1917) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1916 &+ 1917 = 1 \end{align*} \begin{equation*} (1916\div 2)\times 1 + 1 = 959 \end{equation*}
Find the value of $1-2+3-4+\cdots+1917-1918+1919$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1918+1919) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1918 &+ 1919 = 1 \end{align*} \begin{equation*} (1918\div 2)\times 1 + 1 = 960 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1918+1919) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1918 &+ 1919 = 1 \end{align*} \begin{equation*} (1918\div 2)\times 1 + 1 = 960 \end{equation*}
Find the value of $1-2+3-4+\cdots+1937-1938+1939$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1938+1939) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1938 &+ 1939 = 1 \end{align*} \begin{equation*} (1938\div 2)\times 1 + 1 = 970 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1938+1939) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1938 &+ 1939 = 1 \end{align*} \begin{equation*} (1938\div 2)\times 1 + 1 = 970 \end{equation*}
Find the value of $1-2+3-4+\cdots+1957-1958+1959$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1958+1959) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1958 &+ 1959 = 1 \end{align*} \begin{equation*} (1958\div 2)\times 1 + 1 = 980 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1958+1959) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1958 &+ 1959 = 1 \end{align*} \begin{equation*} (1958\div 2)\times 1 + 1 = 980 \end{equation*}
Find the value of $1-2+3-4+\cdots+1997-1998+1999$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1998+1999) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1998 &+ 1999 = 1 \end{align*} \begin{equation*} (1998\div 2)\times 1 + 1 = 1000 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-1998+1999) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -1998 &+ 1999 = 1 \end{align*} \begin{equation*} (1998\div 2)\times 1 + 1 = 1000 \end{equation*}
Find the value of $1-2+3-4+\cdots+2019-2020+2021$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2020+2021) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2020 &+ 2021 = 1 \end{align*} \begin{equation*} (2020\div 2)\times 1 + 1 = 1011 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2020+2021) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2020 &+ 2021 = 1 \end{align*} \begin{equation*} (2020\div 2)\times 1 + 1 = 1011 \end{equation*}
Find the value of $1-2+3-4+\cdots+2039-2040+2041$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2040+2041) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2040 &+ 2041 = 1 \end{align*} \begin{equation*} (2040\div 2)\times 1 + 1 = 1021 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2040+2041) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2040 &+ 2041 = 1 \end{align*} \begin{equation*} (2040\div 2)\times 1 + 1 = 1021 \end{equation*}
Find the value of $1-2+3-4+\cdots+2075-2076+2077$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2076+2077) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2076 &+ 2077 = 1 \end{align*} \begin{equation*} (2076\div 2)\times 1 + 1 = 1039 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2076+2077) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2076 &+ 2077 = 1 \end{align*} \begin{equation*} (2076\div 2)\times 1 + 1 = 1039 \end{equation*}
Find the value of $1-2+3-4+\cdots+2097-2098+2099$.
Sorry. Please check the correct answer below.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2098+2099) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2098 &+ 2099 = 1 \end{align*} \begin{equation*} (2098\div 2)\times 1 + 1 = 1050 \end{equation*}
Yay! Your are right.
\begin{equation*} 1+(-2+3)+(-4+5)+\cdots+(-2098+2099) \end{equation*} \begin{align*} -2+3 &= 3-2 = 1 \\ -4+5 &= 5-4 = 1 \\ & \hspace{2.5mm} \vdots \\ \ -2098 &+ 2099 = 1 \end{align*} \begin{equation*} (2098\div 2)\times 1 + 1 = 1050 \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2251}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2250}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2251}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2250}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2251}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2250}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2251} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2251}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2250}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2251} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1645}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1644}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1645}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1644}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1645}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1644}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1645} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1645}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1644}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1645} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1978}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1977}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1978}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1977}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1978}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1977}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1978} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1978}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1977}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1978} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2204}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2203}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2204}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2203}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2204}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2203}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2204} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2204}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2203}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2204} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2027}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2026}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2027}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2026}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2027}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2026}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2027} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2027}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2026}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2027} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1874}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1873}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1874}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1873}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1874}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1873}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1874} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1874}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1873}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1874} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2139}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2138}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2139}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2138}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2139}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2138}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2139} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2139}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2138}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2139} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1694}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1693}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1694}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1693}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1694}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1693}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1694} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1694}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1693}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1694} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1976}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1975}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1976}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1975}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1976}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1975}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1976} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1976}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1975}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1976} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1611}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1610}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1611}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1610}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1611}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1610}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1611} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1611}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1610}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1611} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2062}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2061}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2062}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2061}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2062}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2061}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2062} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2062}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2061}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2062} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1612}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1611}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1612}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1611}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1612}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1611}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1612} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1612}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1611}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1612} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1779}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1778}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1779}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1778}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1779}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1778}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1779} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1779}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1778}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1779} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1988}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1987}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1988}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1987}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1988}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1987}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1988} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1988}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1987}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1988} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1984}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1983}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1984}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1983}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1984}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1983}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1984} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1984}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1983}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1984} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2290}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2289}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2290}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2289}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2290}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2289}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2290} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2290}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2289}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2290} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1589}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1588}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1589}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1588}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1589}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1588}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1589} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1589}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1588}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1589} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2167}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2166}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2167}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2166}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2167}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2166}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2167} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2167}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2166}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2167} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1666}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1665}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1666}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1665}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1666}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1665}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1666} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1666}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1665}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1666} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2352}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2351}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2352}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2351}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2352}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2351}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2352} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2352}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2351}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2352} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1990}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1989}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1990}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1989}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1990}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1989}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1990} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1990}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1989}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1990} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1722}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1721}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1722}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1721}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1722}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1721}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1722} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1722}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1721}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1722} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2012}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2011}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2012}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2011}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2012}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2011}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2012} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2012}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2011}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2012} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1643}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1642}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1643}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1642}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1643}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1642}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1643} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1643}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1642}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1643} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2116}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2115}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2116}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2115}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2116}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2115}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2116} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2116}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2115}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2116} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1688}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1687}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1688}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1687}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1688}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1687}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1688} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1688}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1687}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1688} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1629}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1628}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1629}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1628}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1629}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1628}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1629} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1629}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1628}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1629} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1527}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1526}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1527}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1526}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1527}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1526}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1527} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1527}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1526}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1527} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2032}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2031}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2032}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2031}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2032}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2031}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2032} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2032}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2031}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2032} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1603}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1602}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1603}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1602}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1603}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1602}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1603} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1603}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1602}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1603} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1606}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1605}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1606}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1605}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1606}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1605}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1606} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1606}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1605}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1606} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2114}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2113}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2114}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2113}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2114}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2113}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2114} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2114}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2113}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2114} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1902}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1901}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1902}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1901}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1902}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1901}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1902} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1902}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1901}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1902} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2298}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2297}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2298}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2297}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2298}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2297}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2298} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2298}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2297}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2298} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2261}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2260}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2261}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2260}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2261}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2260}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2261} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2261}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2260}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2261} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1641}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1640}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1641}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1640}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1641}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1640}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1641} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1641}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1640}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1641} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2157}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2156}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2157}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2156}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2157}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2156}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2157} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2157}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2156}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2157} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2368}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2367}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2368}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2367}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2368}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2367}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2368} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2368}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2367}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2368} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2438}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2437}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2438}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2437}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2438}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2437}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2438} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2438}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2437}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2438} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2388}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2387}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2388}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2387}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2388}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2387}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2388} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2388}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2387}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2388} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2193}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2192}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2193}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2192}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2193}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2192}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2193} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2193}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2192}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2193} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1734}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1733}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1734}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1733}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1734}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1733}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1734} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1734}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1733}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1734} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2022}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2021}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2022}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2021}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2022}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2021}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2022} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2022}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2021}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2022} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1806}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1805}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1806}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1805}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1806}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1805}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1806} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1806}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1805}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1806} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1812}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1811}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1812}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1811}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1812}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1811}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1812} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1812}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1811}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1812} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2430}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2429}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2430}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2429}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2430}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2429}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2430} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2430}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2429}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2430} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2396}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2395}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2396}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2395}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2396}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2395}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2396} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2396}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2395}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2396} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1994}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1993}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1994}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1993}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1994}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1993}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1994} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1994}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1993}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1994} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1530}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1529}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1530}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1529}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1530}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1529}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1530} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1530}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1529}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1530} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1534}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1533}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1534}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1533}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1534}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1533}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1534} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1534}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1533}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1534} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2478}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2477}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2478}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2477}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2478}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2477}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2478} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2478}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2477}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2478} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1909}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1908}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1909}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1908}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1909}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1908}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1909} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1909}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1908}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1909} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2454}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2453}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2454}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2453}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2454}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2453}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2454} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2454}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2453}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2454} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1599}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1598}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1599}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1598}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1599}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1598}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1599} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1599}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1598}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1599} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2013}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2012}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2013}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2012}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2013}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2012}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2013} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2013}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2012}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2013} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1510}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1509}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1510}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1509}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1510}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1509}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1510} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1510}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1509}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1510} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2232}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2231}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2232}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2231}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2232}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2231}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2232} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2232}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2231}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2232} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2151}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2150}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2151}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2150}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2151}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2150}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2151} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2151}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2150}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2151} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2023}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2022}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2023}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2022}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2023}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2022}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2023} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2023}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2022}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2023} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2059}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2058}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2059}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2058}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2059}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2058}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2059} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2059}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2058}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2059} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2257}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2256}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2257}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2256}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2257}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2256}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2257} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2257}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2256}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2257} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2351}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2350}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2351}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2350}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2351}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2350}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2351} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2351}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2350}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2351} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1549}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1548}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1549}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1548}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1549}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1548}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1549} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1549}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1548}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1549} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1928}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1927}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1928}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1927}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1928}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1927}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1928} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1928}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1927}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1928} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1841}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1840}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1841}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1840}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1841}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1840}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1841} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1841}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1840}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1841} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1833}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1832}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1833}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1832}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1833}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1832}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1833} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1833}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1832}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1833} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2300}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2299}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2300}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2299}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2300}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2299}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2300} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2300}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2299}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2300} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1720}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1719}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1720}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1719}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1720}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1719}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1720} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1720}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1719}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1720} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2120}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2119}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2120}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2119}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2120}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2119}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2120} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2120}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2119}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2120} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2399}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2398}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2399}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2398}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2399}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2398}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2399} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2399}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2398}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2399} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1685}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1684}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1685}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1684}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1685}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1684}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1685} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1685}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1684}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1685} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2390}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2389}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2390}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2389}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2390}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2389}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2390} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2390}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2389}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2390} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1538}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1537}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1538}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1537}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1538}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1537}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1538} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1538}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1537}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1538} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1888}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1887}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1888}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1887}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1888}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1887}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1888} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1888}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1887}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1888} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1512}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1511}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1512}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1511}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1512}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1511}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1512} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1512}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1511}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1512} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2408}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2407}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2408}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2407}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2408}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2407}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2408} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2408}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2407}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2408} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2288}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2287}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2288}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2287}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2288}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2287}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2288} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2288}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2287}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2288} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1824}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1823}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1824}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1823}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1824}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1823}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1824} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1824}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1823}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1824} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1713}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1712}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1713}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1712}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1713}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1712}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1713} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1713}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1712}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1713} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2452}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2451}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2452}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2451}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2452}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2451}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2452} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2452}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2451}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2452} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2104}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2103}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2104}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2103}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2104}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2103}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2104} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2104}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2103}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2104} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2064}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2063}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2064}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2063}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2064}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2063}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2064} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2064}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2063}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2064} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1838}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1837}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1838}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1837}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1838}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1837}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1838} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1838}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1837}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1838} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2244}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2243}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2244}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2243}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2244}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2243}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2244} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2244}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2243}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2244} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1896}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1895}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1896}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1895}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1896}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1895}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1896} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1896}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1895}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1896} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2277}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2276}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2277}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2276}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2277}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2276}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2277} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2277}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2276}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2277} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2303}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2302}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2303}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2302}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2303}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2302}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2303} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2303}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2302}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2303} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1665}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1664}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1665}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1664}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1665}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1664}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1665} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1665}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1664}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1665} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1802}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1801}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1802}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1801}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1802}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1801}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1802} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1802}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1801}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1802} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2359}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2358}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2359}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2358}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2359}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2358}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2359} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2359}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2358}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2359} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1869}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1868}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1869}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1868}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1869}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1868}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1869} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1869}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1868}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1869} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1532}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1531}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1532}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1531}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1532}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1531}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1532} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1532}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1531}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1532} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1742}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1741}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1742}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1741}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1742}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1741}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1742} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1742}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1741}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1742} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1562}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1561}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1562}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1561}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1562}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1561}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1562} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1562}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1561}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1562} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1889}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1888}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1889}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1888}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1889}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1888}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1889} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1889}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1888}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1889} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2289}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2288}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2289}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2288}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2289}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2288}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2289} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2289}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2288}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2289} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2225}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2224}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2225}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2224}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2225}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2224}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2225} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2225}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2224}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2225} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2412}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2411}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2412}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2411}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2412}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2411}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2412} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2412}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2411}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2412} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2037}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2036}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{2037}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2036}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2037}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2036}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2037} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2037}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{2036}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{2037} \end{equation*}
Evaluate \begin{align*} \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1644}\right) \left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1643}\right) \\ -\left(1+\tfrac{1}{2}+\cdots+\tfrac{1}{1644}\right) \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1643}\right) \end{align*}
Sorry. Please check the correct answer below.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1644}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1643}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1644} \end{equation*}
Yay! Your are right.
\begin{align*} \text{Let } A&= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1644}\right) \\ B &= \left(\tfrac{1}{2}+\tfrac{1}{3}+\cdots+\tfrac{1}{1643}\right) \end{align*} \begin{equation*} A\times (1+B)-(1+A)\times B = \tfrac{1}{1644} \end{equation*}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2006}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{7}{2000}} = 285.7 \end{equation} assume all to be $\frac{1}{2006}$ \begin{equation} \frac{1}{\frac{7}{2006}}= 286.6 \end{equation} \begin{equation} 285.7 < S < 286.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{7}{2000}} = 285.7 \end{equation} assume all to be $\frac{1}{2006}$ \begin{equation} \frac{1}{\frac{7}{2006}}= 286.6 \end{equation} \begin{equation} 285.7 < S < 286.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2007}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{8}{2000}} = 250.0 \end{equation} assume all to be $\frac{1}{2007}$ \begin{equation} \frac{1}{\frac{8}{2007}}= 250.9 \end{equation} \begin{equation} 250.0 < S < 250.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{8}{2000}} = 250.0 \end{equation} assume all to be $\frac{1}{2007}$ \begin{equation} \frac{1}{\frac{8}{2007}}= 250.9 \end{equation} \begin{equation} 250.0 < S < 250.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2009}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{10}{2000}} = 200.0 \end{equation} assume all to be $\frac{1}{2009}$ \begin{equation} \frac{1}{\frac{10}{2009}}= 200.9 \end{equation} \begin{equation} 200.0 < S < 200.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{10}{2000}} = 200.0 \end{equation} assume all to be $\frac{1}{2009}$ \begin{equation} \frac{1}{\frac{10}{2009}}= 200.9 \end{equation} \begin{equation} 200.0 < S < 200.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2010}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{11}{2000}} = 181.8 \end{equation} assume all to be $\frac{1}{2010}$ \begin{equation} \frac{1}{\frac{11}{2010}}= 182.7 \end{equation} \begin{equation} 181.8 < S < 182.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{11}{2000}} = 181.8 \end{equation} assume all to be $\frac{1}{2010}$ \begin{equation} \frac{1}{\frac{11}{2010}}= 182.7 \end{equation} \begin{equation} 181.8 < S < 182.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2011}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{12}{2000}} = 166.7 \end{equation} assume all to be $\frac{1}{2011}$ \begin{equation} \frac{1}{\frac{12}{2011}}= 167.6 \end{equation} \begin{equation} 166.7 < S < 167.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{12}{2000}} = 166.7 \end{equation} assume all to be $\frac{1}{2011}$ \begin{equation} \frac{1}{\frac{12}{2011}}= 167.6 \end{equation} \begin{equation} 166.7 < S < 167.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2012}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{13}{2000}} = 153.8 \end{equation} assume all to be $\frac{1}{2012}$ \begin{equation} \frac{1}{\frac{13}{2012}}= 154.8 \end{equation} \begin{equation} 153.8 < S < 154.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{13}{2000}} = 153.8 \end{equation} assume all to be $\frac{1}{2012}$ \begin{equation} \frac{1}{\frac{13}{2012}}= 154.8 \end{equation} \begin{equation} 153.8 < S < 154.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2013}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{14}{2000}} = 142.9 \end{equation} assume all to be $\frac{1}{2013}$ \begin{equation} \frac{1}{\frac{14}{2013}}= 143.8 \end{equation} \begin{equation} 142.9 < S < 143.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{14}{2000}} = 142.9 \end{equation} assume all to be $\frac{1}{2013}$ \begin{equation} \frac{1}{\frac{14}{2013}}= 143.8 \end{equation} \begin{equation} 142.9 < S < 143.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2015}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{16}{2000}} = 125.0 \end{equation} assume all to be $\frac{1}{2015}$ \begin{equation} \frac{1}{\frac{16}{2015}}= 125.9 \end{equation} \begin{equation} 125.0 < S < 125.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{16}{2000}} = 125.0 \end{equation} assume all to be $\frac{1}{2015}$ \begin{equation} \frac{1}{\frac{16}{2015}}= 125.9 \end{equation} \begin{equation} 125.0 < S < 125.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2016}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{17}{2000}} = 117.6 \end{equation} assume all to be $\frac{1}{2016}$ \begin{equation} \frac{1}{\frac{17}{2016}}= 118.6 \end{equation} \begin{equation} 117.6 < S < 118.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{17}{2000}} = 117.6 \end{equation} assume all to be $\frac{1}{2016}$ \begin{equation} \frac{1}{\frac{17}{2016}}= 118.6 \end{equation} \begin{equation} 117.6 < S < 118.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2019}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{20}{2000}} = 100.0 \end{equation} assume all to be $\frac{1}{2019}$ \begin{equation} \frac{1}{\frac{20}{2019}}= 101.0 \end{equation} \begin{equation} 100.0 < S < 101.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{20}{2000}} = 100.0 \end{equation} assume all to be $\frac{1}{2019}$ \begin{equation} \frac{1}{\frac{20}{2019}}= 101.0 \end{equation} \begin{equation} 100.0 < S < 101.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2021}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{22}{2000}} = 90.9 \end{equation} assume all to be $\frac{1}{2021}$ \begin{equation} \frac{1}{\frac{22}{2021}}= 91.9 \end{equation} \begin{equation} 90.9 < S < 91.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{22}{2000}} = 90.9 \end{equation} assume all to be $\frac{1}{2021}$ \begin{equation} \frac{1}{\frac{22}{2021}}= 91.9 \end{equation} \begin{equation} 90.9 < S < 91.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2022}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{23}{2000}} = 87.0 \end{equation} assume all to be $\frac{1}{2022}$ \begin{equation} \frac{1}{\frac{23}{2022}}= 87.9 \end{equation} \begin{equation} 87.0 < S < 87.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{23}{2000}} = 87.0 \end{equation} assume all to be $\frac{1}{2022}$ \begin{equation} \frac{1}{\frac{23}{2022}}= 87.9 \end{equation} \begin{equation} 87.0 < S < 87.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2024}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{25}{2000}} = 80.0 \end{equation} assume all to be $\frac{1}{2024}$ \begin{equation} \frac{1}{\frac{25}{2024}}= 81.0 \end{equation} \begin{equation} 80.0 < S < 81.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{25}{2000}} = 80.0 \end{equation} assume all to be $\frac{1}{2024}$ \begin{equation} \frac{1}{\frac{25}{2024}}= 81.0 \end{equation} \begin{equation} 80.0 < S < 81.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2025}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{26}{2000}} = 76.9 \end{equation} assume all to be $\frac{1}{2025}$ \begin{equation} \frac{1}{\frac{26}{2025}}= 77.9 \end{equation} \begin{equation} 76.9 < S < 77.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{26}{2000}} = 76.9 \end{equation} assume all to be $\frac{1}{2025}$ \begin{equation} \frac{1}{\frac{26}{2025}}= 77.9 \end{equation} \begin{equation} 76.9 < S < 77.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2028}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{29}{2000}} = 69.0 \end{equation} assume all to be $\frac{1}{2028}$ \begin{equation} \frac{1}{\frac{29}{2028}}= 69.9 \end{equation} \begin{equation} 69.0 < S < 69.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{29}{2000}} = 69.0 \end{equation} assume all to be $\frac{1}{2028}$ \begin{equation} \frac{1}{\frac{29}{2028}}= 69.9 \end{equation} \begin{equation} 69.0 < S < 69.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2029}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{30}{2000}} = 66.7 \end{equation} assume all to be $\frac{1}{2029}$ \begin{equation} \frac{1}{\frac{30}{2029}}= 67.6 \end{equation} \begin{equation} 66.7 < S < 67.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{30}{2000}} = 66.7 \end{equation} assume all to be $\frac{1}{2029}$ \begin{equation} \frac{1}{\frac{30}{2029}}= 67.6 \end{equation} \begin{equation} 66.7 < S < 67.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2032}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{33}{2000}} = 60.6 \end{equation} assume all to be $\frac{1}{2032}$ \begin{equation} \frac{1}{\frac{33}{2032}}= 61.6 \end{equation} \begin{equation} 60.6 < S < 61.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{33}{2000}} = 60.6 \end{equation} assume all to be $\frac{1}{2032}$ \begin{equation} \frac{1}{\frac{33}{2032}}= 61.6 \end{equation} \begin{equation} 60.6 < S < 61.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2033}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{34}{2000}} = 58.8 \end{equation} assume all to be $\frac{1}{2033}$ \begin{equation} \frac{1}{\frac{34}{2033}}= 59.8 \end{equation} \begin{equation} 58.8 < S < 59.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{34}{2000}} = 58.8 \end{equation} assume all to be $\frac{1}{2033}$ \begin{equation} \frac{1}{\frac{34}{2033}}= 59.8 \end{equation} \begin{equation} 58.8 < S < 59.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2035}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{36}{2000}} = 55.6 \end{equation} assume all to be $\frac{1}{2035}$ \begin{equation} \frac{1}{\frac{36}{2035}}= 56.5 \end{equation} \begin{equation} 55.6 < S < 56.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{36}{2000}} = 55.6 \end{equation} assume all to be $\frac{1}{2035}$ \begin{equation} \frac{1}{\frac{36}{2035}}= 56.5 \end{equation} \begin{equation} 55.6 < S < 56.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2037}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{38}{2000}} = 52.6 \end{equation} assume all to be $\frac{1}{2037}$ \begin{equation} \frac{1}{\frac{38}{2037}}= 53.6 \end{equation} \begin{equation} 52.6 < S < 53.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{38}{2000}} = 52.6 \end{equation} assume all to be $\frac{1}{2037}$ \begin{equation} \frac{1}{\frac{38}{2037}}= 53.6 \end{equation} \begin{equation} 52.6 < S < 53.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2039}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{40}{2000}} = 50.0 \end{equation} assume all to be $\frac{1}{2039}$ \begin{equation} \frac{1}{\frac{40}{2039}}= 51.0 \end{equation} \begin{equation} 50.0 < S < 51.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{40}{2000}} = 50.0 \end{equation} assume all to be $\frac{1}{2039}$ \begin{equation} \frac{1}{\frac{40}{2039}}= 51.0 \end{equation} \begin{equation} 50.0 < S < 51.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2040}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{41}{2000}} = 48.8 \end{equation} assume all to be $\frac{1}{2040}$ \begin{equation} \frac{1}{\frac{41}{2040}}= 49.8 \end{equation} \begin{equation} 48.8 < S < 49.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{41}{2000}} = 48.8 \end{equation} assume all to be $\frac{1}{2040}$ \begin{equation} \frac{1}{\frac{41}{2040}}= 49.8 \end{equation} \begin{equation} 48.8 < S < 49.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2041}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{42}{2000}} = 47.6 \end{equation} assume all to be $\frac{1}{2041}$ \begin{equation} \frac{1}{\frac{42}{2041}}= 48.6 \end{equation} \begin{equation} 47.6 < S < 48.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{42}{2000}} = 47.6 \end{equation} assume all to be $\frac{1}{2041}$ \begin{equation} \frac{1}{\frac{42}{2041}}= 48.6 \end{equation} \begin{equation} 47.6 < S < 48.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2046}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{47}{2000}} = 42.6 \end{equation} assume all to be $\frac{1}{2046}$ \begin{equation} \frac{1}{\frac{47}{2046}}= 43.5 \end{equation} \begin{equation} 42.6 < S < 43.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{47}{2000}} = 42.6 \end{equation} assume all to be $\frac{1}{2046}$ \begin{equation} \frac{1}{\frac{47}{2046}}= 43.5 \end{equation} \begin{equation} 42.6 < S < 43.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2047}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{48}{2000}} = 41.7 \end{equation} assume all to be $\frac{1}{2047}$ \begin{equation} \frac{1}{\frac{48}{2047}}= 42.6 \end{equation} \begin{equation} 41.7 < S < 42.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{48}{2000}} = 41.7 \end{equation} assume all to be $\frac{1}{2047}$ \begin{equation} \frac{1}{\frac{48}{2047}}= 42.6 \end{equation} \begin{equation} 41.7 < S < 42.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2048}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{49}{2000}} = 40.8 \end{equation} assume all to be $\frac{1}{2048}$ \begin{equation} \frac{1}{\frac{49}{2048}}= 41.8 \end{equation} \begin{equation} 40.8 < S < 41.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{49}{2000}} = 40.8 \end{equation} assume all to be $\frac{1}{2048}$ \begin{equation} \frac{1}{\frac{49}{2048}}= 41.8 \end{equation} \begin{equation} 40.8 < S < 41.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2049}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{50}{2000}} = 40.0 \end{equation} assume all to be $\frac{1}{2049}$ \begin{equation} \frac{1}{\frac{50}{2049}}= 41.0 \end{equation} \begin{equation} 40.0 < S < 41.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{50}{2000}} = 40.0 \end{equation} assume all to be $\frac{1}{2049}$ \begin{equation} \frac{1}{\frac{50}{2049}}= 41.0 \end{equation} \begin{equation} 40.0 < S < 41.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2052}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{53}{2000}} = 37.7 \end{equation} assume all to be $\frac{1}{2052}$ \begin{equation} \frac{1}{\frac{53}{2052}}= 38.7 \end{equation} \begin{equation} 37.7 < S < 38.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{53}{2000}} = 37.7 \end{equation} assume all to be $\frac{1}{2052}$ \begin{equation} \frac{1}{\frac{53}{2052}}= 38.7 \end{equation} \begin{equation} 37.7 < S < 38.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2055}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{56}{2000}} = 35.7 \end{equation} assume all to be $\frac{1}{2055}$ \begin{equation} \frac{1}{\frac{56}{2055}}= 36.7 \end{equation} \begin{equation} 35.7 < S < 36.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{56}{2000}} = 35.7 \end{equation} assume all to be $\frac{1}{2055}$ \begin{equation} \frac{1}{\frac{56}{2055}}= 36.7 \end{equation} \begin{equation} 35.7 < S < 36.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2058}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{59}{2000}} = 33.9 \end{equation} assume all to be $\frac{1}{2058}$ \begin{equation} \frac{1}{\frac{59}{2058}}= 34.9 \end{equation} \begin{equation} 33.9 < S < 34.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{59}{2000}} = 33.9 \end{equation} assume all to be $\frac{1}{2058}$ \begin{equation} \frac{1}{\frac{59}{2058}}= 34.9 \end{equation} \begin{equation} 33.9 < S < 34.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2060}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{61}{2000}} = 32.8 \end{equation} assume all to be $\frac{1}{2060}$ \begin{equation} \frac{1}{\frac{61}{2060}}= 33.8 \end{equation} \begin{equation} 32.8 < S < 33.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{61}{2000}} = 32.8 \end{equation} assume all to be $\frac{1}{2060}$ \begin{equation} \frac{1}{\frac{61}{2060}}= 33.8 \end{equation} \begin{equation} 32.8 < S < 33.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2062}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{63}{2000}} = 31.7 \end{equation} assume all to be $\frac{1}{2062}$ \begin{equation} \frac{1}{\frac{63}{2062}}= 32.7 \end{equation} \begin{equation} 31.7 < S < 32.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{63}{2000}} = 31.7 \end{equation} assume all to be $\frac{1}{2062}$ \begin{equation} \frac{1}{\frac{63}{2062}}= 32.7 \end{equation} \begin{equation} 31.7 < S < 32.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2064}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{65}{2000}} = 30.8 \end{equation} assume all to be $\frac{1}{2064}$ \begin{equation} \frac{1}{\frac{65}{2064}}= 31.8 \end{equation} \begin{equation} 30.8 < S < 31.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{65}{2000}} = 30.8 \end{equation} assume all to be $\frac{1}{2064}$ \begin{equation} \frac{1}{\frac{65}{2064}}= 31.8 \end{equation} \begin{equation} 30.8 < S < 31.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2066}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{67}{2000}} = 29.9 \end{equation} assume all to be $\frac{1}{2066}$ \begin{equation} \frac{1}{\frac{67}{2066}}= 30.8 \end{equation} \begin{equation} 29.9 < S < 30.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{67}{2000}} = 29.9 \end{equation} assume all to be $\frac{1}{2066}$ \begin{equation} \frac{1}{\frac{67}{2066}}= 30.8 \end{equation} \begin{equation} 29.9 < S < 30.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2068}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{69}{2000}} = 29.0 \end{equation} assume all to be $\frac{1}{2068}$ \begin{equation} \frac{1}{\frac{69}{2068}}= 30.0 \end{equation} \begin{equation} 29.0 < S < 30.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{69}{2000}} = 29.0 \end{equation} assume all to be $\frac{1}{2068}$ \begin{equation} \frac{1}{\frac{69}{2068}}= 30.0 \end{equation} \begin{equation} 29.0 < S < 30.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2069}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{70}{2000}} = 28.6 \end{equation} assume all to be $\frac{1}{2069}$ \begin{equation} \frac{1}{\frac{70}{2069}}= 29.6 \end{equation} \begin{equation} 28.6 < S < 29.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{70}{2000}} = 28.6 \end{equation} assume all to be $\frac{1}{2069}$ \begin{equation} \frac{1}{\frac{70}{2069}}= 29.6 \end{equation} \begin{equation} 28.6 < S < 29.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2071}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{72}{2000}} = 27.8 \end{equation} assume all to be $\frac{1}{2071}$ \begin{equation} \frac{1}{\frac{72}{2071}}= 28.8 \end{equation} \begin{equation} 27.8 < S < 28.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{72}{2000}} = 27.8 \end{equation} assume all to be $\frac{1}{2071}$ \begin{equation} \frac{1}{\frac{72}{2071}}= 28.8 \end{equation} \begin{equation} 27.8 < S < 28.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2074}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{75}{2000}} = 26.7 \end{equation} assume all to be $\frac{1}{2074}$ \begin{equation} \frac{1}{\frac{75}{2074}}= 27.7 \end{equation} \begin{equation} 26.7 < S < 27.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{75}{2000}} = 26.7 \end{equation} assume all to be $\frac{1}{2074}$ \begin{equation} \frac{1}{\frac{75}{2074}}= 27.7 \end{equation} \begin{equation} 26.7 < S < 27.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2076}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{77}{2000}} = 26.0 \end{equation} assume all to be $\frac{1}{2076}$ \begin{equation} \frac{1}{\frac{77}{2076}}= 27.0 \end{equation} \begin{equation} 26.0 < S < 27.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{77}{2000}} = 26.0 \end{equation} assume all to be $\frac{1}{2076}$ \begin{equation} \frac{1}{\frac{77}{2076}}= 27.0 \end{equation} \begin{equation} 26.0 < S < 27.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2077}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{78}{2000}} = 25.6 \end{equation} assume all to be $\frac{1}{2077}$ \begin{equation} \frac{1}{\frac{78}{2077}}= 26.6 \end{equation} \begin{equation} 25.6 < S < 26.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{78}{2000}} = 25.6 \end{equation} assume all to be $\frac{1}{2077}$ \begin{equation} \frac{1}{\frac{78}{2077}}= 26.6 \end{equation} \begin{equation} 25.6 < S < 26.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2079}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{80}{2000}} = 25.0 \end{equation} assume all to be $\frac{1}{2079}$ \begin{equation} \frac{1}{\frac{80}{2079}}= 26.0 \end{equation} \begin{equation} 25.0 < S < 26.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{80}{2000}} = 25.0 \end{equation} assume all to be $\frac{1}{2079}$ \begin{equation} \frac{1}{\frac{80}{2079}}= 26.0 \end{equation} \begin{equation} 25.0 < S < 26.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2080}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{81}{2000}} = 24.7 \end{equation} assume all to be $\frac{1}{2080}$ \begin{equation} \frac{1}{\frac{81}{2080}}= 25.7 \end{equation} \begin{equation} 24.7 < S < 25.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{81}{2000}} = 24.7 \end{equation} assume all to be $\frac{1}{2080}$ \begin{equation} \frac{1}{\frac{81}{2080}}= 25.7 \end{equation} \begin{equation} 24.7 < S < 25.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2083}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{84}{2000}} = 23.8 \end{equation} assume all to be $\frac{1}{2083}$ \begin{equation} \frac{1}{\frac{84}{2083}}= 24.8 \end{equation} \begin{equation} 23.8 < S < 24.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{84}{2000}} = 23.8 \end{equation} assume all to be $\frac{1}{2083}$ \begin{equation} \frac{1}{\frac{84}{2083}}= 24.8 \end{equation} \begin{equation} 23.8 < S < 24.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2084}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{85}{2000}} = 23.5 \end{equation} assume all to be $\frac{1}{2084}$ \begin{equation} \frac{1}{\frac{85}{2084}}= 24.5 \end{equation} \begin{equation} 23.5 < S < 24.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{85}{2000}} = 23.5 \end{equation} assume all to be $\frac{1}{2084}$ \begin{equation} \frac{1}{\frac{85}{2084}}= 24.5 \end{equation} \begin{equation} 23.5 < S < 24.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2086}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{87}{2000}} = 23.0 \end{equation} assume all to be $\frac{1}{2086}$ \begin{equation} \frac{1}{\frac{87}{2086}}= 24.0 \end{equation} \begin{equation} 23.0 < S < 24.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{87}{2000}} = 23.0 \end{equation} assume all to be $\frac{1}{2086}$ \begin{equation} \frac{1}{\frac{87}{2086}}= 24.0 \end{equation} \begin{equation} 23.0 < S < 24.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2087}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{88}{2000}} = 22.7 \end{equation} assume all to be $\frac{1}{2087}$ \begin{equation} \frac{1}{\frac{88}{2087}}= 23.7 \end{equation} \begin{equation} 22.7 < S < 23.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{88}{2000}} = 22.7 \end{equation} assume all to be $\frac{1}{2087}$ \begin{equation} \frac{1}{\frac{88}{2087}}= 23.7 \end{equation} \begin{equation} 22.7 < S < 23.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2090}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{91}{2000}} = 22.0 \end{equation} assume all to be $\frac{1}{2090}$ \begin{equation} \frac{1}{\frac{91}{2090}}= 23.0 \end{equation} \begin{equation} 22.0 < S < 23.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{91}{2000}} = 22.0 \end{equation} assume all to be $\frac{1}{2090}$ \begin{equation} \frac{1}{\frac{91}{2090}}= 23.0 \end{equation} \begin{equation} 22.0 < S < 23.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2091}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{92}{2000}} = 21.7 \end{equation} assume all to be $\frac{1}{2091}$ \begin{equation} \frac{1}{\frac{92}{2091}}= 22.7 \end{equation} \begin{equation} 21.7 < S < 22.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{92}{2000}} = 21.7 \end{equation} assume all to be $\frac{1}{2091}$ \begin{equation} \frac{1}{\frac{92}{2091}}= 22.7 \end{equation} \begin{equation} 21.7 < S < 22.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2095}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{96}{2000}} = 20.8 \end{equation} assume all to be $\frac{1}{2095}$ \begin{equation} \frac{1}{\frac{96}{2095}}= 21.8 \end{equation} \begin{equation} 20.8 < S < 21.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{96}{2000}} = 20.8 \end{equation} assume all to be $\frac{1}{2095}$ \begin{equation} \frac{1}{\frac{96}{2095}}= 21.8 \end{equation} \begin{equation} 20.8 < S < 21.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2096}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{97}{2000}} = 20.6 \end{equation} assume all to be $\frac{1}{2096}$ \begin{equation} \frac{1}{\frac{97}{2096}}= 21.6 \end{equation} \begin{equation} 20.6 < S < 21.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{97}{2000}} = 20.6 \end{equation} assume all to be $\frac{1}{2096}$ \begin{equation} \frac{1}{\frac{97}{2096}}= 21.6 \end{equation} \begin{equation} 20.6 < S < 21.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2000} + \frac{1}{2001} + \frac{1}{2002}+\cdots+\frac{1}{2099}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{100}{2000}} = 20.0 \end{equation} assume all to be $\frac{1}{2099}$ \begin{equation} \frac{1}{\frac{100}{2099}}= 21.0 \end{equation} \begin{equation} 20.0 < S < 21.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2000}$ \begin{equation} \frac{1}{\frac{100}{2000}} = 20.0 \end{equation} assume all to be $\frac{1}{2099}$ \begin{equation} \frac{1}{\frac{100}{2099}}= 21.0 \end{equation} \begin{equation} 20.0 < S < 21.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2007}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{7}{2001}} = 285.9 \end{equation} assume all to be $\frac{1}{2007}$ \begin{equation} \frac{1}{\frac{7}{2007}}= 286.7 \end{equation} \begin{equation} 285.9 < S < 286.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{7}{2001}} = 285.9 \end{equation} assume all to be $\frac{1}{2007}$ \begin{equation} \frac{1}{\frac{7}{2007}}= 286.7 \end{equation} \begin{equation} 285.9 < S < 286.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2011}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{11}{2001}} = 181.9 \end{equation} assume all to be $\frac{1}{2011}$ \begin{equation} \frac{1}{\frac{11}{2011}}= 182.8 \end{equation} \begin{equation} 181.9 < S < 182.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{11}{2001}} = 181.9 \end{equation} assume all to be $\frac{1}{2011}$ \begin{equation} \frac{1}{\frac{11}{2011}}= 182.8 \end{equation} \begin{equation} 181.9 < S < 182.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2012}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{12}{2001}} = 166.8 \end{equation} assume all to be $\frac{1}{2012}$ \begin{equation} \frac{1}{\frac{12}{2012}}= 167.7 \end{equation} \begin{equation} 166.8 < S < 167.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{12}{2001}} = 166.8 \end{equation} assume all to be $\frac{1}{2012}$ \begin{equation} \frac{1}{\frac{12}{2012}}= 167.7 \end{equation} \begin{equation} 166.8 < S < 167.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2013}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{13}{2001}} = 153.9 \end{equation} assume all to be $\frac{1}{2013}$ \begin{equation} \frac{1}{\frac{13}{2013}}= 154.8 \end{equation} \begin{equation} 153.9 < S < 154.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{13}{2001}} = 153.9 \end{equation} assume all to be $\frac{1}{2013}$ \begin{equation} \frac{1}{\frac{13}{2013}}= 154.8 \end{equation} \begin{equation} 153.9 < S < 154.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2014}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{14}{2001}} = 142.9 \end{equation} assume all to be $\frac{1}{2014}$ \begin{equation} \frac{1}{\frac{14}{2014}}= 143.9 \end{equation} \begin{equation} 142.9 < S < 143.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{14}{2001}} = 142.9 \end{equation} assume all to be $\frac{1}{2014}$ \begin{equation} \frac{1}{\frac{14}{2014}}= 143.9 \end{equation} \begin{equation} 142.9 < S < 143.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2017}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{17}{2001}} = 117.7 \end{equation} assume all to be $\frac{1}{2017}$ \begin{equation} \frac{1}{\frac{17}{2017}}= 118.6 \end{equation} \begin{equation} 117.7 < S < 118.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{17}{2001}} = 117.7 \end{equation} assume all to be $\frac{1}{2017}$ \begin{equation} \frac{1}{\frac{17}{2017}}= 118.6 \end{equation} \begin{equation} 117.7 < S < 118.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2022}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{22}{2001}} = 91.0 \end{equation} assume all to be $\frac{1}{2022}$ \begin{equation} \frac{1}{\frac{22}{2022}}= 91.9 \end{equation} \begin{equation} 91.0 < S < 91.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{22}{2001}} = 91.0 \end{equation} assume all to be $\frac{1}{2022}$ \begin{equation} \frac{1}{\frac{22}{2022}}= 91.9 \end{equation} \begin{equation} 91.0 < S < 91.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2023}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{23}{2001}} = 87.0 \end{equation} assume all to be $\frac{1}{2023}$ \begin{equation} \frac{1}{\frac{23}{2023}}= 88.0 \end{equation} \begin{equation} 87.0 < S < 88.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{23}{2001}} = 87.0 \end{equation} assume all to be $\frac{1}{2023}$ \begin{equation} \frac{1}{\frac{23}{2023}}= 88.0 \end{equation} \begin{equation} 87.0 < S < 88.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2026}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{26}{2001}} = 77.0 \end{equation} assume all to be $\frac{1}{2026}$ \begin{equation} \frac{1}{\frac{26}{2026}}= 77.9 \end{equation} \begin{equation} 77.0 < S < 77.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{26}{2001}} = 77.0 \end{equation} assume all to be $\frac{1}{2026}$ \begin{equation} \frac{1}{\frac{26}{2026}}= 77.9 \end{equation} \begin{equation} 77.0 < S < 77.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2029}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{29}{2001}} = 69.0 \end{equation} assume all to be $\frac{1}{2029}$ \begin{equation} \frac{1}{\frac{29}{2029}}= 70.0 \end{equation} \begin{equation} 69.0 < S < 70.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{29}{2001}} = 69.0 \end{equation} assume all to be $\frac{1}{2029}$ \begin{equation} \frac{1}{\frac{29}{2029}}= 70.0 \end{equation} \begin{equation} 69.0 < S < 70.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2030}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{30}{2001}} = 66.7 \end{equation} assume all to be $\frac{1}{2030}$ \begin{equation} \frac{1}{\frac{30}{2030}}= 67.7 \end{equation} \begin{equation} 66.7 < S < 67.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{30}{2001}} = 66.7 \end{equation} assume all to be $\frac{1}{2030}$ \begin{equation} \frac{1}{\frac{30}{2030}}= 67.7 \end{equation} \begin{equation} 66.7 < S < 67.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2031}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{31}{2001}} = 64.5 \end{equation} assume all to be $\frac{1}{2031}$ \begin{equation} \frac{1}{\frac{31}{2031}}= 65.5 \end{equation} \begin{equation} 64.5 < S < 65.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{31}{2001}} = 64.5 \end{equation} assume all to be $\frac{1}{2031}$ \begin{equation} \frac{1}{\frac{31}{2031}}= 65.5 \end{equation} \begin{equation} 64.5 < S < 65.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2032}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{32}{2001}} = 62.5 \end{equation} assume all to be $\frac{1}{2032}$ \begin{equation} \frac{1}{\frac{32}{2032}}= 63.5 \end{equation} \begin{equation} 62.5 < S < 63.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{32}{2001}} = 62.5 \end{equation} assume all to be $\frac{1}{2032}$ \begin{equation} \frac{1}{\frac{32}{2032}}= 63.5 \end{equation} \begin{equation} 62.5 < S < 63.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2033}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{33}{2001}} = 60.6 \end{equation} assume all to be $\frac{1}{2033}$ \begin{equation} \frac{1}{\frac{33}{2033}}= 61.6 \end{equation} \begin{equation} 60.6 < S < 61.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{33}{2001}} = 60.6 \end{equation} assume all to be $\frac{1}{2033}$ \begin{equation} \frac{1}{\frac{33}{2033}}= 61.6 \end{equation} \begin{equation} 60.6 < S < 61.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2034}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{34}{2001}} = 58.9 \end{equation} assume all to be $\frac{1}{2034}$ \begin{equation} \frac{1}{\frac{34}{2034}}= 59.8 \end{equation} \begin{equation} 58.9 < S < 59.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{34}{2001}} = 58.9 \end{equation} assume all to be $\frac{1}{2034}$ \begin{equation} \frac{1}{\frac{34}{2034}}= 59.8 \end{equation} \begin{equation} 58.9 < S < 59.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2036}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{36}{2001}} = 55.6 \end{equation} assume all to be $\frac{1}{2036}$ \begin{equation} \frac{1}{\frac{36}{2036}}= 56.6 \end{equation} \begin{equation} 55.6 < S < 56.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{36}{2001}} = 55.6 \end{equation} assume all to be $\frac{1}{2036}$ \begin{equation} \frac{1}{\frac{36}{2036}}= 56.6 \end{equation} \begin{equation} 55.6 < S < 56.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2038}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{38}{2001}} = 52.7 \end{equation} assume all to be $\frac{1}{2038}$ \begin{equation} \frac{1}{\frac{38}{2038}}= 53.6 \end{equation} \begin{equation} 52.7 < S < 53.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{38}{2001}} = 52.7 \end{equation} assume all to be $\frac{1}{2038}$ \begin{equation} \frac{1}{\frac{38}{2038}}= 53.6 \end{equation} \begin{equation} 52.7 < S < 53.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2041}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{41}{2001}} = 48.8 \end{equation} assume all to be $\frac{1}{2041}$ \begin{equation} \frac{1}{\frac{41}{2041}}= 49.8 \end{equation} \begin{equation} 48.8 < S < 49.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{41}{2001}} = 48.8 \end{equation} assume all to be $\frac{1}{2041}$ \begin{equation} \frac{1}{\frac{41}{2041}}= 49.8 \end{equation} \begin{equation} 48.8 < S < 49.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2042}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{42}{2001}} = 47.6 \end{equation} assume all to be $\frac{1}{2042}$ \begin{equation} \frac{1}{\frac{42}{2042}}= 48.6 \end{equation} \begin{equation} 47.6 < S < 48.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{42}{2001}} = 47.6 \end{equation} assume all to be $\frac{1}{2042}$ \begin{equation} \frac{1}{\frac{42}{2042}}= 48.6 \end{equation} \begin{equation} 47.6 < S < 48.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2043}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{43}{2001}} = 46.5 \end{equation} assume all to be $\frac{1}{2043}$ \begin{equation} \frac{1}{\frac{43}{2043}}= 47.5 \end{equation} \begin{equation} 46.5 < S < 47.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{43}{2001}} = 46.5 \end{equation} assume all to be $\frac{1}{2043}$ \begin{equation} \frac{1}{\frac{43}{2043}}= 47.5 \end{equation} \begin{equation} 46.5 < S < 47.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2047}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{47}{2001}} = 42.6 \end{equation} assume all to be $\frac{1}{2047}$ \begin{equation} \frac{1}{\frac{47}{2047}}= 43.6 \end{equation} \begin{equation} 42.6 < S < 43.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{47}{2001}} = 42.6 \end{equation} assume all to be $\frac{1}{2047}$ \begin{equation} \frac{1}{\frac{47}{2047}}= 43.6 \end{equation} \begin{equation} 42.6 < S < 43.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2048}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{48}{2001}} = 41.7 \end{equation} assume all to be $\frac{1}{2048}$ \begin{equation} \frac{1}{\frac{48}{2048}}= 42.7 \end{equation} \begin{equation} 41.7 < S < 42.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{48}{2001}} = 41.7 \end{equation} assume all to be $\frac{1}{2048}$ \begin{equation} \frac{1}{\frac{48}{2048}}= 42.7 \end{equation} \begin{equation} 41.7 < S < 42.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2049}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{49}{2001}} = 40.8 \end{equation} assume all to be $\frac{1}{2049}$ \begin{equation} \frac{1}{\frac{49}{2049}}= 41.8 \end{equation} \begin{equation} 40.8 < S < 41.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{49}{2001}} = 40.8 \end{equation} assume all to be $\frac{1}{2049}$ \begin{equation} \frac{1}{\frac{49}{2049}}= 41.8 \end{equation} \begin{equation} 40.8 < S < 41.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2053}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{53}{2001}} = 37.8 \end{equation} assume all to be $\frac{1}{2053}$ \begin{equation} \frac{1}{\frac{53}{2053}}= 38.7 \end{equation} \begin{equation} 37.8 < S < 38.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{53}{2001}} = 37.8 \end{equation} assume all to be $\frac{1}{2053}$ \begin{equation} \frac{1}{\frac{53}{2053}}= 38.7 \end{equation} \begin{equation} 37.8 < S < 38.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2056}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{56}{2001}} = 35.7 \end{equation} assume all to be $\frac{1}{2056}$ \begin{equation} \frac{1}{\frac{56}{2056}}= 36.7 \end{equation} \begin{equation} 35.7 < S < 36.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{56}{2001}} = 35.7 \end{equation} assume all to be $\frac{1}{2056}$ \begin{equation} \frac{1}{\frac{56}{2056}}= 36.7 \end{equation} \begin{equation} 35.7 < S < 36.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2059}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{59}{2001}} = 33.9 \end{equation} assume all to be $\frac{1}{2059}$ \begin{equation} \frac{1}{\frac{59}{2059}}= 34.9 \end{equation} \begin{equation} 33.9 < S < 34.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{59}{2001}} = 33.9 \end{equation} assume all to be $\frac{1}{2059}$ \begin{equation} \frac{1}{\frac{59}{2059}}= 34.9 \end{equation} \begin{equation} 33.9 < S < 34.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2061}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{61}{2001}} = 32.8 \end{equation} assume all to be $\frac{1}{2061}$ \begin{equation} \frac{1}{\frac{61}{2061}}= 33.8 \end{equation} \begin{equation} 32.8 < S < 33.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{61}{2001}} = 32.8 \end{equation} assume all to be $\frac{1}{2061}$ \begin{equation} \frac{1}{\frac{61}{2061}}= 33.8 \end{equation} \begin{equation} 32.8 < S < 33.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2063}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{63}{2001}} = 31.8 \end{equation} assume all to be $\frac{1}{2063}$ \begin{equation} \frac{1}{\frac{63}{2063}}= 32.7 \end{equation} \begin{equation} 31.8 < S < 32.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{63}{2001}} = 31.8 \end{equation} assume all to be $\frac{1}{2063}$ \begin{equation} \frac{1}{\frac{63}{2063}}= 32.7 \end{equation} \begin{equation} 31.8 < S < 32.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2065}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{65}{2001}} = 30.8 \end{equation} assume all to be $\frac{1}{2065}$ \begin{equation} \frac{1}{\frac{65}{2065}}= 31.8 \end{equation} \begin{equation} 30.8 < S < 31.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{65}{2001}} = 30.8 \end{equation} assume all to be $\frac{1}{2065}$ \begin{equation} \frac{1}{\frac{65}{2065}}= 31.8 \end{equation} \begin{equation} 30.8 < S < 31.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2067}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{67}{2001}} = 29.9 \end{equation} assume all to be $\frac{1}{2067}$ \begin{equation} \frac{1}{\frac{67}{2067}}= 30.9 \end{equation} \begin{equation} 29.9 < S < 30.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{67}{2001}} = 29.9 \end{equation} assume all to be $\frac{1}{2067}$ \begin{equation} \frac{1}{\frac{67}{2067}}= 30.9 \end{equation} \begin{equation} 29.9 < S < 30.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2069}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{69}{2001}} = 29.0 \end{equation} assume all to be $\frac{1}{2069}$ \begin{equation} \frac{1}{\frac{69}{2069}}= 30.0 \end{equation} \begin{equation} 29.0 < S < 30.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{69}{2001}} = 29.0 \end{equation} assume all to be $\frac{1}{2069}$ \begin{equation} \frac{1}{\frac{69}{2069}}= 30.0 \end{equation} \begin{equation} 29.0 < S < 30.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2070}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{70}{2001}} = 28.6 \end{equation} assume all to be $\frac{1}{2070}$ \begin{equation} \frac{1}{\frac{70}{2070}}= 29.6 \end{equation} \begin{equation} 28.6 < S < 29.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{70}{2001}} = 28.6 \end{equation} assume all to be $\frac{1}{2070}$ \begin{equation} \frac{1}{\frac{70}{2070}}= 29.6 \end{equation} \begin{equation} 28.6 < S < 29.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2072}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{72}{2001}} = 27.8 \end{equation} assume all to be $\frac{1}{2072}$ \begin{equation} \frac{1}{\frac{72}{2072}}= 28.8 \end{equation} \begin{equation} 27.8 < S < 28.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{72}{2001}} = 27.8 \end{equation} assume all to be $\frac{1}{2072}$ \begin{equation} \frac{1}{\frac{72}{2072}}= 28.8 \end{equation} \begin{equation} 27.8 < S < 28.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2075}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{75}{2001}} = 26.7 \end{equation} assume all to be $\frac{1}{2075}$ \begin{equation} \frac{1}{\frac{75}{2075}}= 27.7 \end{equation} \begin{equation} 26.7 < S < 27.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{75}{2001}} = 26.7 \end{equation} assume all to be $\frac{1}{2075}$ \begin{equation} \frac{1}{\frac{75}{2075}}= 27.7 \end{equation} \begin{equation} 26.7 < S < 27.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2077}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{77}{2001}} = 26.0 \end{equation} assume all to be $\frac{1}{2077}$ \begin{equation} \frac{1}{\frac{77}{2077}}= 27.0 \end{equation} \begin{equation} 26.0 < S < 27.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{77}{2001}} = 26.0 \end{equation} assume all to be $\frac{1}{2077}$ \begin{equation} \frac{1}{\frac{77}{2077}}= 27.0 \end{equation} \begin{equation} 26.0 < S < 27.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2078}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{78}{2001}} = 25.7 \end{equation} assume all to be $\frac{1}{2078}$ \begin{equation} \frac{1}{\frac{78}{2078}}= 26.6 \end{equation} \begin{equation} 25.7 < S < 26.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{78}{2001}} = 25.7 \end{equation} assume all to be $\frac{1}{2078}$ \begin{equation} \frac{1}{\frac{78}{2078}}= 26.6 \end{equation} \begin{equation} 25.7 < S < 26.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2081}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{81}{2001}} = 24.7 \end{equation} assume all to be $\frac{1}{2081}$ \begin{equation} \frac{1}{\frac{81}{2081}}= 25.7 \end{equation} \begin{equation} 24.7 < S < 25.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{81}{2001}} = 24.7 \end{equation} assume all to be $\frac{1}{2081}$ \begin{equation} \frac{1}{\frac{81}{2081}}= 25.7 \end{equation} \begin{equation} 24.7 < S < 25.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2084}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{84}{2001}} = 23.8 \end{equation} assume all to be $\frac{1}{2084}$ \begin{equation} \frac{1}{\frac{84}{2084}}= 24.8 \end{equation} \begin{equation} 23.8 < S < 24.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{84}{2001}} = 23.8 \end{equation} assume all to be $\frac{1}{2084}$ \begin{equation} \frac{1}{\frac{84}{2084}}= 24.8 \end{equation} \begin{equation} 23.8 < S < 24.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2085}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{85}{2001}} = 23.5 \end{equation} assume all to be $\frac{1}{2085}$ \begin{equation} \frac{1}{\frac{85}{2085}}= 24.5 \end{equation} \begin{equation} 23.5 < S < 24.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{85}{2001}} = 23.5 \end{equation} assume all to be $\frac{1}{2085}$ \begin{equation} \frac{1}{\frac{85}{2085}}= 24.5 \end{equation} \begin{equation} 23.5 < S < 24.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2087}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{87}{2001}} = 23.0 \end{equation} assume all to be $\frac{1}{2087}$ \begin{equation} \frac{1}{\frac{87}{2087}}= 24.0 \end{equation} \begin{equation} 23.0 < S < 24.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{87}{2001}} = 23.0 \end{equation} assume all to be $\frac{1}{2087}$ \begin{equation} \frac{1}{\frac{87}{2087}}= 24.0 \end{equation} \begin{equation} 23.0 < S < 24.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2088}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{88}{2001}} = 22.7 \end{equation} assume all to be $\frac{1}{2088}$ \begin{equation} \frac{1}{\frac{88}{2088}}= 23.7 \end{equation} \begin{equation} 22.7 < S < 23.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{88}{2001}} = 22.7 \end{equation} assume all to be $\frac{1}{2088}$ \begin{equation} \frac{1}{\frac{88}{2088}}= 23.7 \end{equation} \begin{equation} 22.7 < S < 23.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2091}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{91}{2001}} = 22.0 \end{equation} assume all to be $\frac{1}{2091}$ \begin{equation} \frac{1}{\frac{91}{2091}}= 23.0 \end{equation} \begin{equation} 22.0 < S < 23.0 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{91}{2001}} = 22.0 \end{equation} assume all to be $\frac{1}{2091}$ \begin{equation} \frac{1}{\frac{91}{2091}}= 23.0 \end{equation} \begin{equation} 22.0 < S < 23.0 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2092}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{92}{2001}} = 21.8 \end{equation} assume all to be $\frac{1}{2092}$ \begin{equation} \frac{1}{\frac{92}{2092}}= 22.7 \end{equation} \begin{equation} 21.8 < S < 22.7 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{92}{2001}} = 21.8 \end{equation} assume all to be $\frac{1}{2092}$ \begin{equation} \frac{1}{\frac{92}{2092}}= 22.7 \end{equation} \begin{equation} 21.8 < S < 22.7 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2093}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{93}{2001}} = 21.5 \end{equation} assume all to be $\frac{1}{2093}$ \begin{equation} \frac{1}{\frac{93}{2093}}= 22.5 \end{equation} \begin{equation} 21.5 < S < 22.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{93}{2001}} = 21.5 \end{equation} assume all to be $\frac{1}{2093}$ \begin{equation} \frac{1}{\frac{93}{2093}}= 22.5 \end{equation} \begin{equation} 21.5 < S < 22.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2096}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{96}{2001}} = 20.8 \end{equation} assume all to be $\frac{1}{2096}$ \begin{equation} \frac{1}{\frac{96}{2096}}= 21.8 \end{equation} \begin{equation} 20.8 < S < 21.8 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{96}{2001}} = 20.8 \end{equation} assume all to be $\frac{1}{2096}$ \begin{equation} \frac{1}{\frac{96}{2096}}= 21.8 \end{equation} \begin{equation} 20.8 < S < 21.8 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2001} + \frac{1}{2002} + \frac{1}{2003}+\cdots+\frac{1}{2097}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{97}{2001}} = 20.6 \end{equation} assume all to be $\frac{1}{2097}$ \begin{equation} \frac{1}{\frac{97}{2097}}= 21.6 \end{equation} \begin{equation} 20.6 < S < 21.6 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2001}$ \begin{equation} \frac{1}{\frac{97}{2001}} = 20.6 \end{equation} assume all to be $\frac{1}{2097}$ \begin{equation} \frac{1}{\frac{97}{2097}}= 21.6 \end{equation} \begin{equation} 20.6 < S < 21.6 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2002} + \frac{1}{2003} + \frac{1}{2004}+\cdots+\frac{1}{2007}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2002}$ \begin{equation} \frac{1}{\frac{6}{2002}} = 333.7 \end{equation} assume all to be $\frac{1}{2007}$ \begin{equation} \frac{1}{\frac{6}{2007}}= 334.5 \end{equation} \begin{equation} 333.7 < S < 334.5 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2002}$ \begin{equation} \frac{1}{\frac{6}{2002}} = 333.7 \end{equation} assume all to be $\frac{1}{2007}$ \begin{equation} \frac{1}{\frac{6}{2007}}= 334.5 \end{equation} \begin{equation} 333.7 < S < 334.5 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2002} + \frac{1}{2003} + \frac{1}{2004}+\cdots+\frac{1}{2008}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2002}$ \begin{equation} \frac{1}{\frac{7}{2002}} = 286.0 \end{equation} assume all to be $\frac{1}{2008}$ \begin{equation} \frac{1}{\frac{7}{2008}}= 286.9 \end{equation} \begin{equation} 286.0 < S < 286.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2002}$ \begin{equation} \frac{1}{\frac{7}{2002}} = 286.0 \end{equation} assume all to be $\frac{1}{2008}$ \begin{equation} \frac{1}{\frac{7}{2008}}= 286.9 \end{equation} \begin{equation} 286.0 < S < 286.9 \end{equation}
Given that $$S=\dfrac{1}{\frac{1}{2002} + \frac{1}{2003} + \frac{1}{2004}+\cdots+\frac{1}{2012}}.$$ Find the largest whole number smaller than $S$.
Sorry. Please check the correct answer below.
Assume all to be $\frac{1}{2002}$ \begin{equation} \frac{1}{\frac{11}{2002}} = 182.0 \end{equation} assume all to be $\frac{1}{2012}$ \begin{equation} \frac{1}{\frac{11}{2012}}= 182.9 \end{equation} \begin{equation} 182.0 < S < 182.9 \end{equation}
Yay! Your are right.
Assume all to be $\frac{1}{2002}$ \begin{equation} \frac{1}{\frac{11}{2002}} = 182.0 \end{equation} assume all to be $\frac{1}{2012}$ \begin{equation} \frac{1}{\frac{11}{2012}}= 182.9 \end{equation} \begin{equation} 182.0 < S < 182.9 \end{equation}
2025 © All Rights Reserved. Privacy Policy | Terms of Service
Select level
Select subject