SELECT A SUBJECT
Find the largest and smallest fraction in \begin{equation*} \dfrac{9}{5}, \ \dfrac{12}{7}, \ \dfrac{27}{17}, \ \dfrac{36}{19}, \ \dfrac{54}{29} \end{equation*}
Sorry. Please check the correct answer below.
The lowest common multiple of 9, 12, 27, 36, 54 \begin{align*} \frac{9}{5} &= \frac{108}{60}, \ \frac{12}{7}=\frac{108}{63} \\ \frac{27}{17} &= \frac{108}{68}, \ \frac{36}{19} = \frac{108}{57} \\ \frac{54}{29} &= \frac{108}{58} \end{align*}
Yay! Your are right.
The lowest common multiple of 9, 12, 27, 36, 54 \begin{align*} \frac{9}{5} &= \frac{108}{60}, \ \frac{12}{7}=\frac{108}{63} \\ \frac{27}{17} &= \frac{108}{68}, \ \frac{36}{19} = \frac{108}{57} \\ \frac{54}{29} &= \frac{108}{58} \end{align*}
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 20 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 20\text{ days} = \frac{10}{21} \text{ of work.} \end{equation} So $\frac{11}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{11}{21} \end{equation} so number of days $=\frac{11}{21}\times 42 = 22$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 21\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 42 = 21$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 21\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 42 = 21$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 22 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 22\text{ days} = \frac{11}{21} \text{ of work.} \end{equation} So $\frac{10}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{10}{21} \end{equation} so number of days $=\frac{10}{21}\times 42 = 20$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 22\text{ days} = \frac{11}{21} \text{ of work.} \end{equation} So $\frac{10}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{10}{21} \end{equation} so number of days $=\frac{10}{21}\times 42 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 23 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 23\text{ days} = \frac{23}{42} \text{ of work.} \end{equation} So $\frac{19}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{19}{42} \end{equation} so number of days $=\frac{19}{42}\times 42 = 19$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 23\text{ days} = \frac{23}{42} \text{ of work.} \end{equation} So $\frac{19}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{19}{42} \end{equation} so number of days $=\frac{19}{42}\times 42 = 19$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 24 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 24\text{ days} = \frac{4}{7} \text{ of work.} \end{equation} So $\frac{3}{7}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{3}{7} \end{equation} so number of days $=\frac{3}{7}\times 42 = 18$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 24\text{ days} = \frac{4}{7} \text{ of work.} \end{equation} So $\frac{3}{7}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{3}{7} \end{equation} so number of days $=\frac{3}{7}\times 42 = 18$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 25 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 25\text{ days} = \frac{25}{42} \text{ of work.} \end{equation} So $\frac{17}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{17}{42} \end{equation} so number of days $=\frac{17}{42}\times 42 = 17$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 25\text{ days} = \frac{25}{42} \text{ of work.} \end{equation} So $\frac{17}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{17}{42} \end{equation} so number of days $=\frac{17}{42}\times 42 = 17$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 26 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 26\text{ days} = \frac{13}{21} \text{ of work.} \end{equation} So $\frac{8}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{8}{21} \end{equation} so number of days $=\frac{8}{21}\times 42 = 16$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 26\text{ days} = \frac{13}{21} \text{ of work.} \end{equation} So $\frac{8}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{8}{21} \end{equation} so number of days $=\frac{8}{21}\times 42 = 16$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 27 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 27\text{ days} = \frac{9}{14} \text{ of work.} \end{equation} So $\frac{5}{14}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{5}{14} \end{equation} so number of days $=\frac{5}{14}\times 42 = 15$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 27\text{ days} = \frac{9}{14} \text{ of work.} \end{equation} So $\frac{5}{14}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{5}{14} \end{equation} so number of days $=\frac{5}{14}\times 42 = 15$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 28 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 28\text{ days} = \frac{2}{3} \text{ of work.} \end{equation} So $\frac{1}{3}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{3} \end{equation} so number of days $=\frac{1}{3}\times 42 = 14$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 28\text{ days} = \frac{2}{3} \text{ of work.} \end{equation} So $\frac{1}{3}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{3} \end{equation} so number of days $=\frac{1}{3}\times 42 = 14$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 29 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 29\text{ days} = \frac{29}{42} \text{ of work.} \end{equation} So $\frac{13}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{13}{42} \end{equation} so number of days $=\frac{13}{42}\times 42 = 13$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 29\text{ days} = \frac{29}{42} \text{ of work.} \end{equation} So $\frac{13}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{13}{42} \end{equation} so number of days $=\frac{13}{42}\times 42 = 13$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 30 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 30\text{ days} = \frac{5}{7} \text{ of work.} \end{equation} So $\frac{2}{7}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{2}{7} \end{equation} so number of days $=\frac{2}{7}\times 42 = 12$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 30\text{ days} = \frac{5}{7} \text{ of work.} \end{equation} So $\frac{2}{7}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{2}{7} \end{equation} so number of days $=\frac{2}{7}\times 42 = 12$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 31 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 31\text{ days} = \frac{31}{42} \text{ of work.} \end{equation} So $\frac{11}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{11}{42} \end{equation} so number of days $=\frac{11}{42}\times 42 = 11$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 31\text{ days} = \frac{31}{42} \text{ of work.} \end{equation} So $\frac{11}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{11}{42} \end{equation} so number of days $=\frac{11}{42}\times 42 = 11$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 32 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 32\text{ days} = \frac{16}{21} \text{ of work.} \end{equation} So $\frac{5}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{5}{21} \end{equation} so number of days $=\frac{5}{21}\times 42 = 10$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 32\text{ days} = \frac{16}{21} \text{ of work.} \end{equation} So $\frac{5}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{5}{21} \end{equation} so number of days $=\frac{5}{21}\times 42 = 10$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 33 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 33\text{ days} = \frac{11}{14} \text{ of work.} \end{equation} So $\frac{3}{14}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{3}{14} \end{equation} so number of days $=\frac{3}{14}\times 42 = 9$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 33\text{ days} = \frac{11}{14} \text{ of work.} \end{equation} So $\frac{3}{14}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{3}{14} \end{equation} so number of days $=\frac{3}{14}\times 42 = 9$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 34 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 34\text{ days} = \frac{17}{21} \text{ of work.} \end{equation} So $\frac{4}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{4}{21} \end{equation} so number of days $=\frac{4}{21}\times 42 = 8$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 34\text{ days} = \frac{17}{21} \text{ of work.} \end{equation} So $\frac{4}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{4}{21} \end{equation} so number of days $=\frac{4}{21}\times 42 = 8$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 35 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 35\text{ days} = \frac{5}{6} \text{ of work.} \end{equation} So $\frac{1}{6}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{6} \end{equation} so number of days $=\frac{1}{6}\times 42 = 7$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 35\text{ days} = \frac{5}{6} \text{ of work.} \end{equation} So $\frac{1}{6}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{6} \end{equation} so number of days $=\frac{1}{6}\times 42 = 7$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 36 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 36\text{ days} = \frac{6}{7} \text{ of work.} \end{equation} So $\frac{1}{7}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{7} \end{equation} so number of days $=\frac{1}{7}\times 42 = 6$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 36\text{ days} = \frac{6}{7} \text{ of work.} \end{equation} So $\frac{1}{7}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{7} \end{equation} so number of days $=\frac{1}{7}\times 42 = 6$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 37 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 37\text{ days} = \frac{37}{42} \text{ of work.} \end{equation} So $\frac{5}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{5}{42} \end{equation} so number of days $=\frac{5}{42}\times 42 = 5$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 37\text{ days} = \frac{37}{42} \text{ of work.} \end{equation} So $\frac{5}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{5}{42} \end{equation} so number of days $=\frac{5}{42}\times 42 = 5$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 38 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 38\text{ days} = \frac{19}{21} \text{ of work.} \end{equation} So $\frac{2}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{2}{21} \end{equation} so number of days $=\frac{2}{21}\times 42 = 4$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 38\text{ days} = \frac{19}{21} \text{ of work.} \end{equation} So $\frac{2}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{2}{21} \end{equation} so number of days $=\frac{2}{21}\times 42 = 4$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 39 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 39\text{ days} = \frac{13}{14} \text{ of work.} \end{equation} So $\frac{1}{14}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{14} \end{equation} so number of days $=\frac{1}{14}\times 42 = 3$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 39\text{ days} = \frac{13}{14} \text{ of work.} \end{equation} So $\frac{1}{14}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{14} \end{equation} so number of days $=\frac{1}{14}\times 42 = 3$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 40 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 40\text{ days} = \frac{20}{21} \text{ of work.} \end{equation} So $\frac{1}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{21} \end{equation} so number of days $=\frac{1}{21}\times 42 = 2$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 40\text{ days} = \frac{20}{21} \text{ of work.} \end{equation} So $\frac{1}{21}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{21} \end{equation} so number of days $=\frac{1}{21}\times 42 = 2$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 22 days, Ben will take a further 20 days to complete the project. If Alan works alone for 41 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 41\text{ days} = \frac{41}{42} \text{ of work.} \end{equation} So $\frac{1}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{42} \end{equation} so number of days $=\frac{1}{42}\times 42 = 1$.
Yay! Your are right.
\begin{align*} \text{22 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $B$ does $1/42$ work. \begin{equation} A: 21 \times 2 / 1 = 42 \text{ days alone,} \end{equation} so in one day $A$ does $1/42$ work $($or $1/21-1/42=1/42)$. \begin{equation} A: 1/42 \times 41\text{ days} = \frac{41}{42} \text{ of work.} \end{equation} So $\frac{1}{42}$ of work left for $B$. \begin{equation} B: 1/42 \times \text{ number of days } = \frac{1}{42} \end{equation} so number of days $=\frac{1}{42}\times 42 = 1$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 21\text{ days} = \frac{1}{4} \text{ of work.} \end{equation} So $\frac{3}{4}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{3}{4} \end{equation} so number of days $=\frac{3}{4}\times 28 = 21$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 21\text{ days} = \frac{1}{4} \text{ of work.} \end{equation} So $\frac{3}{4}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{3}{4} \end{equation} so number of days $=\frac{3}{4}\times 28 = 21$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 24 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 24\text{ days} = \frac{2}{7} \text{ of work.} \end{equation} So $\frac{5}{7}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{5}{7} \end{equation} so number of days $=\frac{5}{7}\times 28 = 20$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 24\text{ days} = \frac{2}{7} \text{ of work.} \end{equation} So $\frac{5}{7}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{5}{7} \end{equation} so number of days $=\frac{5}{7}\times 28 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 27 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 27\text{ days} = \frac{9}{28} \text{ of work.} \end{equation} So $\frac{19}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{19}{28} \end{equation} so number of days $=\frac{19}{28}\times 28 = 19$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 27\text{ days} = \frac{9}{28} \text{ of work.} \end{equation} So $\frac{19}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{19}{28} \end{equation} so number of days $=\frac{19}{28}\times 28 = 19$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 30 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 30\text{ days} = \frac{5}{14} \text{ of work.} \end{equation} So $\frac{9}{14}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{9}{14} \end{equation} so number of days $=\frac{9}{14}\times 28 = 18$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 30\text{ days} = \frac{5}{14} \text{ of work.} \end{equation} So $\frac{9}{14}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{9}{14} \end{equation} so number of days $=\frac{9}{14}\times 28 = 18$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 33 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 33\text{ days} = \frac{11}{28} \text{ of work.} \end{equation} So $\frac{17}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{17}{28} \end{equation} so number of days $=\frac{17}{28}\times 28 = 17$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 33\text{ days} = \frac{11}{28} \text{ of work.} \end{equation} So $\frac{17}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{17}{28} \end{equation} so number of days $=\frac{17}{28}\times 28 = 17$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 36 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 36\text{ days} = \frac{3}{7} \text{ of work.} \end{equation} So $\frac{4}{7}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{4}{7} \end{equation} so number of days $=\frac{4}{7}\times 28 = 16$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 36\text{ days} = \frac{3}{7} \text{ of work.} \end{equation} So $\frac{4}{7}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{4}{7} \end{equation} so number of days $=\frac{4}{7}\times 28 = 16$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 39 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 39\text{ days} = \frac{13}{28} \text{ of work.} \end{equation} So $\frac{15}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{15}{28} \end{equation} so number of days $=\frac{15}{28}\times 28 = 15$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 39\text{ days} = \frac{13}{28} \text{ of work.} \end{equation} So $\frac{15}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{15}{28} \end{equation} so number of days $=\frac{15}{28}\times 28 = 15$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 42 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 42\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 28 = 14$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 42\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 28 = 14$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 45 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 45\text{ days} = \frac{15}{28} \text{ of work.} \end{equation} So $\frac{13}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{13}{28} \end{equation} so number of days $=\frac{13}{28}\times 28 = 13$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 45\text{ days} = \frac{15}{28} \text{ of work.} \end{equation} So $\frac{13}{28}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{13}{28} \end{equation} so number of days $=\frac{13}{28}\times 28 = 13$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 48 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 48\text{ days} = \frac{4}{7} \text{ of work.} \end{equation} So $\frac{3}{7}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{3}{7} \end{equation} so number of days $=\frac{3}{7}\times 28 = 12$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:3$. $1+3=4$. \begin{equation} B : 21 \times 4 / 3 = 28 \text{ days alone,} \end{equation} so in one day $B$ does $1/28$ work. \begin{equation} A: 21 \times 4 / 1 = 84 \text{ days alone,} \end{equation} so in one day $A$ does $1/84$ work $($or $1/21-1/28=1/84)$. \begin{equation} A: 1/84 \times 48\text{ days} = \frac{4}{7} \text{ of work.} \end{equation} So $\frac{3}{7}$ of work left for $B$. \begin{equation} B: 1/28 \times \text{ number of days } = \frac{3}{7} \end{equation} so number of days $=\frac{3}{7}\times 28 = 12$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 28 days, Ben will take a further 20 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 21\text{ days} = \frac{1}{8} \text{ of work.} \end{equation} So $\frac{7}{8}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{7}{8} \end{equation} so number of days $=\frac{7}{8}\times 24 = 21$.
Yay! Your are right.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 21\text{ days} = \frac{1}{8} \text{ of work.} \end{equation} So $\frac{7}{8}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{7}{8} \end{equation} so number of days $=\frac{7}{8}\times 24 = 21$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 28 days, Ben will take a further 20 days to complete the project. If Alan works alone for 28 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 28\text{ days} = \frac{1}{6} \text{ of work.} \end{equation} So $\frac{5}{6}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{5}{6} \end{equation} so number of days $=\frac{5}{6}\times 24 = 20$.
Yay! Your are right.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 28\text{ days} = \frac{1}{6} \text{ of work.} \end{equation} So $\frac{5}{6}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{5}{6} \end{equation} so number of days $=\frac{5}{6}\times 24 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 28 days, Ben will take a further 20 days to complete the project. If Alan works alone for 35 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 35\text{ days} = \frac{5}{24} \text{ of work.} \end{equation} So $\frac{19}{24}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{19}{24} \end{equation} so number of days $=\frac{19}{24}\times 24 = 19$.
Yay! Your are right.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 35\text{ days} = \frac{5}{24} \text{ of work.} \end{equation} So $\frac{19}{24}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{19}{24} \end{equation} so number of days $=\frac{19}{24}\times 24 = 19$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 28 days, Ben will take a further 20 days to complete the project. If Alan works alone for 42 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 42\text{ days} = \frac{1}{4} \text{ of work.} \end{equation} So $\frac{3}{4}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{3}{4} \end{equation} so number of days $=\frac{3}{4}\times 24 = 18$.
Yay! Your are right.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 42\text{ days} = \frac{1}{4} \text{ of work.} \end{equation} So $\frac{3}{4}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{3}{4} \end{equation} so number of days $=\frac{3}{4}\times 24 = 18$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 28 days, Ben will take a further 20 days to complete the project. If Alan works alone for 49 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 49\text{ days} = \frac{7}{24} \text{ of work.} \end{equation} So $\frac{17}{24}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{17}{24} \end{equation} so number of days $=\frac{17}{24}\times 24 = 17$.
Yay! Your are right.
\begin{align*} \text{28 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:7$. $1+7=8$. \begin{equation} B : 21 \times 8 / 7 = 24 \text{ days alone,} \end{equation} so in one day $B$ does $1/24$ work. \begin{equation} A: 21 \times 8 / 1 = 168 \text{ days alone,} \end{equation} so in one day $A$ does $1/168$ work $($or $1/21-1/24=1/168)$. \begin{equation} A: 1/168 \times 49\text{ days} = \frac{7}{24} \text{ of work.} \end{equation} So $\frac{17}{24}$ of work left for $B$. \begin{equation} B: 1/24 \times \text{ number of days } = \frac{17}{24} \end{equation} so number of days $=\frac{17}{24}\times 24 = 17$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 42 days, Ben will take a further 20 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{42 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:21$. $1+21=22$. \begin{equation} B : 21 \times 22 / 21 = 22 \text{ days alone,} \end{equation} so in one day $B$ does $1/22$ work. \begin{equation} A: 21 \times 22 / 1 = 462 \text{ days alone,} \end{equation} so in one day $A$ does $1/462$ work $($or $1/21-1/22=1/462)$. \begin{equation} A: 1/462 \times 21\text{ days} = \frac{1}{22} \text{ of work.} \end{equation} So $\frac{21}{22}$ of work left for $B$. \begin{equation} B: 1/22 \times \text{ number of days } = \frac{21}{22} \end{equation} so number of days $=\frac{21}{22}\times 22 = 21$.
Yay! Your are right.
\begin{align*} \text{42 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:21$. $1+21=22$. \begin{equation} B : 21 \times 22 / 21 = 22 \text{ days alone,} \end{equation} so in one day $B$ does $1/22$ work. \begin{equation} A: 21 \times 22 / 1 = 462 \text{ days alone,} \end{equation} so in one day $A$ does $1/462$ work $($or $1/21-1/22=1/462)$. \begin{equation} A: 1/462 \times 21\text{ days} = \frac{1}{22} \text{ of work.} \end{equation} So $\frac{21}{22}$ of work left for $B$. \begin{equation} B: 1/22 \times \text{ number of days } = \frac{21}{22} \end{equation} so number of days $=\frac{21}{22}\times 22 = 21$.
Alan and Ben are working on a science project. Together, they can finish it in 21 days. If Alan works alone for 42 days, Ben will take a further 20 days to complete the project. If Alan works alone for 42 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{42 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:21$. $1+21=22$. \begin{equation} B : 21 \times 22 / 21 = 22 \text{ days alone,} \end{equation} so in one day $B$ does $1/22$ work. \begin{equation} A: 21 \times 22 / 1 = 462 \text{ days alone,} \end{equation} so in one day $A$ does $1/462$ work $($or $1/21-1/22=1/462)$. \begin{equation} A: 1/462 \times 42\text{ days} = \frac{1}{11} \text{ of work.} \end{equation} So $\frac{10}{11}$ of work left for $B$. \begin{equation} B: 1/22 \times \text{ number of days } = \frac{10}{11} \end{equation} so number of days $=\frac{10}{11}\times 22 = 20$.
Yay! Your are right.
\begin{align*} \text{42 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{21 days by }A + 21\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:21$. $1+21=22$. \begin{equation} B : 21 \times 22 / 21 = 22 \text{ days alone,} \end{equation} so in one day $B$ does $1/22$ work. \begin{equation} A: 21 \times 22 / 1 = 462 \text{ days alone,} \end{equation} so in one day $A$ does $1/462$ work $($or $1/21-1/22=1/462)$. \begin{equation} A: 1/462 \times 42\text{ days} = \frac{1}{11} \text{ of work.} \end{equation} So $\frac{10}{11}$ of work left for $B$. \begin{equation} B: 1/22 \times \text{ number of days } = \frac{10}{11} \end{equation} so number of days $=\frac{10}{11}\times 22 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 20 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 20\text{ days} = \frac{20}{33} \text{ of work.} \end{equation} So $\frac{13}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{13}{33} \end{equation} so number of days $=\frac{13}{33}\times 66 = 26$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 20\text{ days} = \frac{20}{33} \text{ of work.} \end{equation} So $\frac{13}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{13}{33} \end{equation} so number of days $=\frac{13}{33}\times 66 = 26$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 21\text{ days} = \frac{7}{11} \text{ of work.} \end{equation} So $\frac{4}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{4}{11} \end{equation} so number of days $=\frac{4}{11}\times 66 = 24$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 21\text{ days} = \frac{7}{11} \text{ of work.} \end{equation} So $\frac{4}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{4}{11} \end{equation} so number of days $=\frac{4}{11}\times 66 = 24$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 22 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 22\text{ days} = \frac{2}{3} \text{ of work.} \end{equation} So $\frac{1}{3}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{1}{3} \end{equation} so number of days $=\frac{1}{3}\times 66 = 22$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 22\text{ days} = \frac{2}{3} \text{ of work.} \end{equation} So $\frac{1}{3}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{1}{3} \end{equation} so number of days $=\frac{1}{3}\times 66 = 22$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 23 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 23\text{ days} = \frac{23}{33} \text{ of work.} \end{equation} So $\frac{10}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{10}{33} \end{equation} so number of days $=\frac{10}{33}\times 66 = 20$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 23\text{ days} = \frac{23}{33} \text{ of work.} \end{equation} So $\frac{10}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{10}{33} \end{equation} so number of days $=\frac{10}{33}\times 66 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 24 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 24\text{ days} = \frac{8}{11} \text{ of work.} \end{equation} So $\frac{3}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{3}{11} \end{equation} so number of days $=\frac{3}{11}\times 66 = 18$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 24\text{ days} = \frac{8}{11} \text{ of work.} \end{equation} So $\frac{3}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{3}{11} \end{equation} so number of days $=\frac{3}{11}\times 66 = 18$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 25 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 25\text{ days} = \frac{25}{33} \text{ of work.} \end{equation} So $\frac{8}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{8}{33} \end{equation} so number of days $=\frac{8}{33}\times 66 = 16$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 25\text{ days} = \frac{25}{33} \text{ of work.} \end{equation} So $\frac{8}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{8}{33} \end{equation} so number of days $=\frac{8}{33}\times 66 = 16$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 26 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 26\text{ days} = \frac{26}{33} \text{ of work.} \end{equation} So $\frac{7}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{7}{33} \end{equation} so number of days $=\frac{7}{33}\times 66 = 14$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 26\text{ days} = \frac{26}{33} \text{ of work.} \end{equation} So $\frac{7}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{7}{33} \end{equation} so number of days $=\frac{7}{33}\times 66 = 14$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 27 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 27\text{ days} = \frac{9}{11} \text{ of work.} \end{equation} So $\frac{2}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{2}{11} \end{equation} so number of days $=\frac{2}{11}\times 66 = 12$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 27\text{ days} = \frac{9}{11} \text{ of work.} \end{equation} So $\frac{2}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{2}{11} \end{equation} so number of days $=\frac{2}{11}\times 66 = 12$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 28 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 28\text{ days} = \frac{28}{33} \text{ of work.} \end{equation} So $\frac{5}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{5}{33} \end{equation} so number of days $=\frac{5}{33}\times 66 = 10$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 28\text{ days} = \frac{28}{33} \text{ of work.} \end{equation} So $\frac{5}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{5}{33} \end{equation} so number of days $=\frac{5}{33}\times 66 = 10$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 29 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 29\text{ days} = \frac{29}{33} \text{ of work.} \end{equation} So $\frac{4}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{4}{33} \end{equation} so number of days $=\frac{4}{33}\times 66 = 8$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 29\text{ days} = \frac{29}{33} \text{ of work.} \end{equation} So $\frac{4}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{4}{33} \end{equation} so number of days $=\frac{4}{33}\times 66 = 8$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 30 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 30\text{ days} = \frac{10}{11} \text{ of work.} \end{equation} So $\frac{1}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{1}{11} \end{equation} so number of days $=\frac{1}{11}\times 66 = 6$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 30\text{ days} = \frac{10}{11} \text{ of work.} \end{equation} So $\frac{1}{11}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{1}{11} \end{equation} so number of days $=\frac{1}{11}\times 66 = 6$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 31 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 31\text{ days} = \frac{31}{33} \text{ of work.} \end{equation} So $\frac{2}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{2}{33} \end{equation} so number of days $=\frac{2}{33}\times 66 = 4$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 31\text{ days} = \frac{31}{33} \text{ of work.} \end{equation} So $\frac{2}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{2}{33} \end{equation} so number of days $=\frac{2}{33}\times 66 = 4$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 20 days to complete the project. If Alan works alone for 32 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 32\text{ days} = \frac{32}{33} \text{ of work.} \end{equation} So $\frac{1}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{1}{33} \end{equation} so number of days $=\frac{1}{33}\times 66 = 2$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=2:1$. $2+1=3$. \begin{equation} B : 22 \times 3 / 1 = 66 \text{ days alone,} \end{equation} so in one day $B$ does $1/66$ work. \begin{equation} A: 22 \times 3 / 2 = 33 \text{ days alone,} \end{equation} so in one day $A$ does $1/33$ work $($or $1/22-1/66=1/33)$. \begin{equation} A: 1/33 \times 32\text{ days} = \frac{32}{33} \text{ of work.} \end{equation} So $\frac{1}{33}$ of work left for $B$. \begin{equation} B: 1/66 \times \text{ number of days } = \frac{1}{33} \end{equation} so number of days $=\frac{1}{33}\times 66 = 2$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 20 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 20\text{ days} = \frac{5}{11} \text{ of work.} \end{equation} So $\frac{6}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{6}{11} \end{equation} so number of days $=\frac{6}{11}\times 44 = 24$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 20\text{ days} = \frac{5}{11} \text{ of work.} \end{equation} So $\frac{6}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{6}{11} \end{equation} so number of days $=\frac{6}{11}\times 44 = 24$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 21\text{ days} = \frac{21}{44} \text{ of work.} \end{equation} So $\frac{23}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{23}{44} \end{equation} so number of days $=\frac{23}{44}\times 44 = 23$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 21\text{ days} = \frac{21}{44} \text{ of work.} \end{equation} So $\frac{23}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{23}{44} \end{equation} so number of days $=\frac{23}{44}\times 44 = 23$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 22 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 22\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 44 = 22$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 22\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 44 = 22$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 23 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 23\text{ days} = \frac{23}{44} \text{ of work.} \end{equation} So $\frac{21}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{21}{44} \end{equation} so number of days $=\frac{21}{44}\times 44 = 21$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 23\text{ days} = \frac{23}{44} \text{ of work.} \end{equation} So $\frac{21}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{21}{44} \end{equation} so number of days $=\frac{21}{44}\times 44 = 21$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 24 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 24\text{ days} = \frac{6}{11} \text{ of work.} \end{equation} So $\frac{5}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{11} \end{equation} so number of days $=\frac{5}{11}\times 44 = 20$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 24\text{ days} = \frac{6}{11} \text{ of work.} \end{equation} So $\frac{5}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{11} \end{equation} so number of days $=\frac{5}{11}\times 44 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 25 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 25\text{ days} = \frac{25}{44} \text{ of work.} \end{equation} So $\frac{19}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{19}{44} \end{equation} so number of days $=\frac{19}{44}\times 44 = 19$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 25\text{ days} = \frac{25}{44} \text{ of work.} \end{equation} So $\frac{19}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{19}{44} \end{equation} so number of days $=\frac{19}{44}\times 44 = 19$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 26 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 26\text{ days} = \frac{13}{22} \text{ of work.} \end{equation} So $\frac{9}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{22} \end{equation} so number of days $=\frac{9}{22}\times 44 = 18$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 26\text{ days} = \frac{13}{22} \text{ of work.} \end{equation} So $\frac{9}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{22} \end{equation} so number of days $=\frac{9}{22}\times 44 = 18$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 27 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 27\text{ days} = \frac{27}{44} \text{ of work.} \end{equation} So $\frac{17}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{17}{44} \end{equation} so number of days $=\frac{17}{44}\times 44 = 17$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 27\text{ days} = \frac{27}{44} \text{ of work.} \end{equation} So $\frac{17}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{17}{44} \end{equation} so number of days $=\frac{17}{44}\times 44 = 17$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 28 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 28\text{ days} = \frac{7}{11} \text{ of work.} \end{equation} So $\frac{4}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{4}{11} \end{equation} so number of days $=\frac{4}{11}\times 44 = 16$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 28\text{ days} = \frac{7}{11} \text{ of work.} \end{equation} So $\frac{4}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{4}{11} \end{equation} so number of days $=\frac{4}{11}\times 44 = 16$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 29 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 29\text{ days} = \frac{29}{44} \text{ of work.} \end{equation} So $\frac{15}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{15}{44} \end{equation} so number of days $=\frac{15}{44}\times 44 = 15$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 29\text{ days} = \frac{29}{44} \text{ of work.} \end{equation} So $\frac{15}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{15}{44} \end{equation} so number of days $=\frac{15}{44}\times 44 = 15$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 30 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 30\text{ days} = \frac{15}{22} \text{ of work.} \end{equation} So $\frac{7}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{22} \end{equation} so number of days $=\frac{7}{22}\times 44 = 14$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 30\text{ days} = \frac{15}{22} \text{ of work.} \end{equation} So $\frac{7}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{22} \end{equation} so number of days $=\frac{7}{22}\times 44 = 14$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 31 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 31\text{ days} = \frac{31}{44} \text{ of work.} \end{equation} So $\frac{13}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{13}{44} \end{equation} so number of days $=\frac{13}{44}\times 44 = 13$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 31\text{ days} = \frac{31}{44} \text{ of work.} \end{equation} So $\frac{13}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{13}{44} \end{equation} so number of days $=\frac{13}{44}\times 44 = 13$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 32 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 32\text{ days} = \frac{8}{11} \text{ of work.} \end{equation} So $\frac{3}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{11} \end{equation} so number of days $=\frac{3}{11}\times 44 = 12$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 32\text{ days} = \frac{8}{11} \text{ of work.} \end{equation} So $\frac{3}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{11} \end{equation} so number of days $=\frac{3}{11}\times 44 = 12$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 33 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 33\text{ days} = \frac{3}{4} \text{ of work.} \end{equation} So $\frac{1}{4}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{4} \end{equation} so number of days $=\frac{1}{4}\times 44 = 11$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 33\text{ days} = \frac{3}{4} \text{ of work.} \end{equation} So $\frac{1}{4}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{4} \end{equation} so number of days $=\frac{1}{4}\times 44 = 11$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 34 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 34\text{ days} = \frac{17}{22} \text{ of work.} \end{equation} So $\frac{5}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{22} \end{equation} so number of days $=\frac{5}{22}\times 44 = 10$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 34\text{ days} = \frac{17}{22} \text{ of work.} \end{equation} So $\frac{5}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{22} \end{equation} so number of days $=\frac{5}{22}\times 44 = 10$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 35 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 35\text{ days} = \frac{35}{44} \text{ of work.} \end{equation} So $\frac{9}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{44} \end{equation} so number of days $=\frac{9}{44}\times 44 = 9$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 35\text{ days} = \frac{35}{44} \text{ of work.} \end{equation} So $\frac{9}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{44} \end{equation} so number of days $=\frac{9}{44}\times 44 = 9$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 36 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 36\text{ days} = \frac{9}{11} \text{ of work.} \end{equation} So $\frac{2}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{2}{11} \end{equation} so number of days $=\frac{2}{11}\times 44 = 8$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 36\text{ days} = \frac{9}{11} \text{ of work.} \end{equation} So $\frac{2}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{2}{11} \end{equation} so number of days $=\frac{2}{11}\times 44 = 8$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 37 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 37\text{ days} = \frac{37}{44} \text{ of work.} \end{equation} So $\frac{7}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{44} \end{equation} so number of days $=\frac{7}{44}\times 44 = 7$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 37\text{ days} = \frac{37}{44} \text{ of work.} \end{equation} So $\frac{7}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{44} \end{equation} so number of days $=\frac{7}{44}\times 44 = 7$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 38 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 38\text{ days} = \frac{19}{22} \text{ of work.} \end{equation} So $\frac{3}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{22} \end{equation} so number of days $=\frac{3}{22}\times 44 = 6$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 38\text{ days} = \frac{19}{22} \text{ of work.} \end{equation} So $\frac{3}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{22} \end{equation} so number of days $=\frac{3}{22}\times 44 = 6$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 39 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 39\text{ days} = \frac{39}{44} \text{ of work.} \end{equation} So $\frac{5}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{44} \end{equation} so number of days $=\frac{5}{44}\times 44 = 5$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 39\text{ days} = \frac{39}{44} \text{ of work.} \end{equation} So $\frac{5}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{44} \end{equation} so number of days $=\frac{5}{44}\times 44 = 5$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 40 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 40\text{ days} = \frac{10}{11} \text{ of work.} \end{equation} So $\frac{1}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{11} \end{equation} so number of days $=\frac{1}{11}\times 44 = 4$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 40\text{ days} = \frac{10}{11} \text{ of work.} \end{equation} So $\frac{1}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{11} \end{equation} so number of days $=\frac{1}{11}\times 44 = 4$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 41 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 41\text{ days} = \frac{41}{44} \text{ of work.} \end{equation} So $\frac{3}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{44} \end{equation} so number of days $=\frac{3}{44}\times 44 = 3$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 41\text{ days} = \frac{41}{44} \text{ of work.} \end{equation} So $\frac{3}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{44} \end{equation} so number of days $=\frac{3}{44}\times 44 = 3$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 42 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 42\text{ days} = \frac{21}{22} \text{ of work.} \end{equation} So $\frac{1}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{22} \end{equation} so number of days $=\frac{1}{22}\times 44 = 2$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 42\text{ days} = \frac{21}{22} \text{ of work.} \end{equation} So $\frac{1}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{22} \end{equation} so number of days $=\frac{1}{22}\times 44 = 2$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 23 days, Ben will take a further 21 days to complete the project. If Alan works alone for 43 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 43\text{ days} = \frac{43}{44} \text{ of work.} \end{equation} So $\frac{1}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{44} \end{equation} so number of days $=\frac{1}{44}\times 44 = 1$.
Yay! Your are right.
\begin{align*} \text{23 days by }A + 21\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 43\text{ days} = \frac{43}{44} \text{ of work.} \end{equation} So $\frac{1}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{44} \end{equation} so number of days $=\frac{1}{44}\times 44 = 1$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 20 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 20\text{ days} = \frac{5}{11} \text{ of work.} \end{equation} So $\frac{6}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{6}{11} \end{equation} so number of days $=\frac{6}{11}\times 44 = 24$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 20\text{ days} = \frac{5}{11} \text{ of work.} \end{equation} So $\frac{6}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{6}{11} \end{equation} so number of days $=\frac{6}{11}\times 44 = 24$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 21 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 21\text{ days} = \frac{21}{44} \text{ of work.} \end{equation} So $\frac{23}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{23}{44} \end{equation} so number of days $=\frac{23}{44}\times 44 = 23$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 21\text{ days} = \frac{21}{44} \text{ of work.} \end{equation} So $\frac{23}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{23}{44} \end{equation} so number of days $=\frac{23}{44}\times 44 = 23$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 22 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 22\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 44 = 22$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 22\text{ days} = \frac{1}{2} \text{ of work.} \end{equation} So $\frac{1}{2}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{2} \end{equation} so number of days $=\frac{1}{2}\times 44 = 22$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 23 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 23\text{ days} = \frac{23}{44} \text{ of work.} \end{equation} So $\frac{21}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{21}{44} \end{equation} so number of days $=\frac{21}{44}\times 44 = 21$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 23\text{ days} = \frac{23}{44} \text{ of work.} \end{equation} So $\frac{21}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{21}{44} \end{equation} so number of days $=\frac{21}{44}\times 44 = 21$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 24 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 24\text{ days} = \frac{6}{11} \text{ of work.} \end{equation} So $\frac{5}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{11} \end{equation} so number of days $=\frac{5}{11}\times 44 = 20$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 24\text{ days} = \frac{6}{11} \text{ of work.} \end{equation} So $\frac{5}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{11} \end{equation} so number of days $=\frac{5}{11}\times 44 = 20$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 25 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 25\text{ days} = \frac{25}{44} \text{ of work.} \end{equation} So $\frac{19}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{19}{44} \end{equation} so number of days $=\frac{19}{44}\times 44 = 19$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 25\text{ days} = \frac{25}{44} \text{ of work.} \end{equation} So $\frac{19}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{19}{44} \end{equation} so number of days $=\frac{19}{44}\times 44 = 19$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 26 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 26\text{ days} = \frac{13}{22} \text{ of work.} \end{equation} So $\frac{9}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{22} \end{equation} so number of days $=\frac{9}{22}\times 44 = 18$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 26\text{ days} = \frac{13}{22} \text{ of work.} \end{equation} So $\frac{9}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{22} \end{equation} so number of days $=\frac{9}{22}\times 44 = 18$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 27 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 27\text{ days} = \frac{27}{44} \text{ of work.} \end{equation} So $\frac{17}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{17}{44} \end{equation} so number of days $=\frac{17}{44}\times 44 = 17$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 27\text{ days} = \frac{27}{44} \text{ of work.} \end{equation} So $\frac{17}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{17}{44} \end{equation} so number of days $=\frac{17}{44}\times 44 = 17$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 28 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 28\text{ days} = \frac{7}{11} \text{ of work.} \end{equation} So $\frac{4}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{4}{11} \end{equation} so number of days $=\frac{4}{11}\times 44 = 16$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 28\text{ days} = \frac{7}{11} \text{ of work.} \end{equation} So $\frac{4}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{4}{11} \end{equation} so number of days $=\frac{4}{11}\times 44 = 16$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 29 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 29\text{ days} = \frac{29}{44} \text{ of work.} \end{equation} So $\frac{15}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{15}{44} \end{equation} so number of days $=\frac{15}{44}\times 44 = 15$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 29\text{ days} = \frac{29}{44} \text{ of work.} \end{equation} So $\frac{15}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{15}{44} \end{equation} so number of days $=\frac{15}{44}\times 44 = 15$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 30 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 30\text{ days} = \frac{15}{22} \text{ of work.} \end{equation} So $\frac{7}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{22} \end{equation} so number of days $=\frac{7}{22}\times 44 = 14$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 30\text{ days} = \frac{15}{22} \text{ of work.} \end{equation} So $\frac{7}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{22} \end{equation} so number of days $=\frac{7}{22}\times 44 = 14$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 31 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 31\text{ days} = \frac{31}{44} \text{ of work.} \end{equation} So $\frac{13}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{13}{44} \end{equation} so number of days $=\frac{13}{44}\times 44 = 13$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 31\text{ days} = \frac{31}{44} \text{ of work.} \end{equation} So $\frac{13}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{13}{44} \end{equation} so number of days $=\frac{13}{44}\times 44 = 13$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 32 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 32\text{ days} = \frac{8}{11} \text{ of work.} \end{equation} So $\frac{3}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{11} \end{equation} so number of days $=\frac{3}{11}\times 44 = 12$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 32\text{ days} = \frac{8}{11} \text{ of work.} \end{equation} So $\frac{3}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{11} \end{equation} so number of days $=\frac{3}{11}\times 44 = 12$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 33 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 33\text{ days} = \frac{3}{4} \text{ of work.} \end{equation} So $\frac{1}{4}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{4} \end{equation} so number of days $=\frac{1}{4}\times 44 = 11$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 33\text{ days} = \frac{3}{4} \text{ of work.} \end{equation} So $\frac{1}{4}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{4} \end{equation} so number of days $=\frac{1}{4}\times 44 = 11$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 34 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 34\text{ days} = \frac{17}{22} \text{ of work.} \end{equation} So $\frac{5}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{22} \end{equation} so number of days $=\frac{5}{22}\times 44 = 10$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 34\text{ days} = \frac{17}{22} \text{ of work.} \end{equation} So $\frac{5}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{22} \end{equation} so number of days $=\frac{5}{22}\times 44 = 10$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 35 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 35\text{ days} = \frac{35}{44} \text{ of work.} \end{equation} So $\frac{9}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{44} \end{equation} so number of days $=\frac{9}{44}\times 44 = 9$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 35\text{ days} = \frac{35}{44} \text{ of work.} \end{equation} So $\frac{9}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{9}{44} \end{equation} so number of days $=\frac{9}{44}\times 44 = 9$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 36 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 36\text{ days} = \frac{9}{11} \text{ of work.} \end{equation} So $\frac{2}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{2}{11} \end{equation} so number of days $=\frac{2}{11}\times 44 = 8$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 36\text{ days} = \frac{9}{11} \text{ of work.} \end{equation} So $\frac{2}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{2}{11} \end{equation} so number of days $=\frac{2}{11}\times 44 = 8$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 37 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 37\text{ days} = \frac{37}{44} \text{ of work.} \end{equation} So $\frac{7}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{44} \end{equation} so number of days $=\frac{7}{44}\times 44 = 7$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 37\text{ days} = \frac{37}{44} \text{ of work.} \end{equation} So $\frac{7}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{7}{44} \end{equation} so number of days $=\frac{7}{44}\times 44 = 7$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 38 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 38\text{ days} = \frac{19}{22} \text{ of work.} \end{equation} So $\frac{3}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{22} \end{equation} so number of days $=\frac{3}{22}\times 44 = 6$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 38\text{ days} = \frac{19}{22} \text{ of work.} \end{equation} So $\frac{3}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{22} \end{equation} so number of days $=\frac{3}{22}\times 44 = 6$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 39 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 39\text{ days} = \frac{39}{44} \text{ of work.} \end{equation} So $\frac{5}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{44} \end{equation} so number of days $=\frac{5}{44}\times 44 = 5$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 39\text{ days} = \frac{39}{44} \text{ of work.} \end{equation} So $\frac{5}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{5}{44} \end{equation} so number of days $=\frac{5}{44}\times 44 = 5$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 40 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 40\text{ days} = \frac{10}{11} \text{ of work.} \end{equation} So $\frac{1}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{11} \end{equation} so number of days $=\frac{1}{11}\times 44 = 4$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 40\text{ days} = \frac{10}{11} \text{ of work.} \end{equation} So $\frac{1}{11}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{11} \end{equation} so number of days $=\frac{1}{11}\times 44 = 4$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 41 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 41\text{ days} = \frac{41}{44} \text{ of work.} \end{equation} So $\frac{3}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{44} \end{equation} so number of days $=\frac{3}{44}\times 44 = 3$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 41\text{ days} = \frac{41}{44} \text{ of work.} \end{equation} So $\frac{3}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{3}{44} \end{equation} so number of days $=\frac{3}{44}\times 44 = 3$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 42 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 42\text{ days} = \frac{21}{22} \text{ of work.} \end{equation} So $\frac{1}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{22} \end{equation} so number of days $=\frac{1}{22}\times 44 = 2$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 42\text{ days} = \frac{21}{22} \text{ of work.} \end{equation} So $\frac{1}{22}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{22} \end{equation} so number of days $=\frac{1}{22}\times 44 = 2$.
Alan and Ben are working on a science project. Together, they can finish it in 22 days. If Alan works alone for 24 days, Ben will take a further 20 days to complete the project. If Alan works alone for 43 days, how many more days will Ben take to complete the project?
Sorry. Please check the correct answer below.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 43\text{ days} = \frac{43}{44} \text{ of work.} \end{equation} So $\frac{1}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{44} \end{equation} so number of days $=\frac{1}{44}\times 44 = 1$.
Yay! Your are right.
\begin{align*} \text{24 days by }A + 20\text{ days by }B &= 1 \text{ project} \\ \text{22 days by }A + 22\text{ days by }B &= 1 \text{ project} \end{align*} Solve above 2 equations get ratio $A:B=1:1$. $1+1=2$. \begin{equation} B : 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $B$ does $1/44$ work. \begin{equation} A: 22 \times 2 / 1 = 44 \text{ days alone,} \end{equation} so in one day $A$ does $1/44$ work $($or $1/22-1/44=1/44)$. \begin{equation} A: 1/44 \times 43\text{ days} = \frac{43}{44} \text{ of work.} \end{equation} So $\frac{1}{44}$ of work left for $B$. \begin{equation} B: 1/44 \times \text{ number of days } = \frac{1}{44} \end{equation} so number of days $=\frac{1}{44}\times 44 = 1$.
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 23 + 2 e = 20\times 20+2.25e \\ & e=4 \text{ steps}/s \\ & 2\times 23 + 23e = 54 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 54 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 23 + 2 e = 20\times 20+2.25e \\ & e=4 \text{ steps}/s \\ & 2\times 23 + 23e = 54 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 54 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 24 + 1.75 e = 20\times 20+2e \\ & e=8 \text{ steps}/s \\ & 1.75\times 24 + 24e = 56 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 56 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 24 + 1.75 e = 20\times 20+2e \\ & e=8 \text{ steps}/s \\ & 1.75\times 24 + 24e = 56 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 56 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 24 + 2 e = 20\times 20+2.25e \\ & e=12 \text{ steps}/s \\ & 2\times 24 + 24e = 72 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 24 + 2 e = 20\times 20+2.25e \\ & e=12 \text{ steps}/s \\ & 2\times 24 + 24e = 72 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 24 + 2.25 e = 20\times 20+2.5e \\ & e=16 \text{ steps}/s \\ & 2.25\times 24 + 24e = 90 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 24 + 2.25 e = 20\times 20+2.5e \\ & e=16 \text{ steps}/s \\ & 2.25\times 24 + 24e = 90 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 24 + 3 e = 20\times 20+3.5e \\ & e=4 \text{ steps}/s \\ & 3\times 24 + 24e = 84 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 24 + 3 e = 20\times 20+3.5e \\ & e=4 \text{ steps}/s \\ & 3\times 24 + 24e = 84 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 24 + 2 e = 21\times 21+2.25e \\ & e=3 \text{ steps}/s \\ & 2\times 24 + 24e = 54 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 54 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 24 + 2 e = 21\times 21+2.25e \\ & e=3 \text{ steps}/s \\ & 2\times 24 + 24e = 54 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 54 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 25 + 1.75 e = 20\times 20+2e \\ & e=15 \text{ steps}/s \\ & 1.75\times 25 + 25e = 70 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 25 + 1.75 e = 20\times 20+2e \\ & e=15 \text{ steps}/s \\ & 1.75\times 25 + 25e = 70 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 25 + 2 e = 20\times 20+2.25e \\ & e=20 \text{ steps}/s \\ & 2\times 25 + 25e = 90 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 25 + 2 e = 20\times 20+2.25e \\ & e=20 \text{ steps}/s \\ & 2\times 25 + 25e = 90 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 25 + 2.5 e = 20\times 20+3e \\ & e=5 \text{ steps}/s \\ & 2.5\times 25 + 25e = 75 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 75 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 25 + 2.5 e = 20\times 20+3e \\ & e=5 \text{ steps}/s \\ & 2.5\times 25 + 25e = 75 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 75 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 25 + 3 e = 20\times 20+3.5e \\ & e=10 \text{ steps}/s \\ & 3\times 25 + 25e = 105 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 25 + 3 e = 20\times 20+3.5e \\ & e=10 \text{ steps}/s \\ & 3\times 25 + 25e = 105 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 105 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 25 + 1.75 e = 21\times 21+2e \\ & e=7 \text{ steps}/s \\ & 1.75\times 25 + 25e = 56 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 56 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 25 + 1.75 e = 21\times 21+2e \\ & e=7 \text{ steps}/s \\ & 1.75\times 25 + 25e = 56 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 56 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 25 + 2 e = 21\times 21+2.25e \\ & e=11 \text{ steps}/s \\ & 2\times 25 + 25e = 72 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 25 + 2 e = 21\times 21+2.25e \\ & e=11 \text{ steps}/s \\ & 2\times 25 + 25e = 72 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 25 + 2.25 e = 21\times 21+2.5e \\ & e=15 \text{ steps}/s \\ & 2.25\times 25 + 25e = 90 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 25 + 2.25 e = 21\times 21+2.5e \\ & e=15 \text{ steps}/s \\ & 2.25\times 25 + 25e = 90 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 25 + 3 e = 21\times 21+3.5e \\ & e=3 \text{ steps}/s \\ & 3\times 25 + 25e = 84 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 25 + 3 e = 21\times 21+3.5e \\ & e=3 \text{ steps}/s \\ & 3\times 25 + 25e = 84 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 25 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 25 + 2 e = 22\times 22+2.25e \\ & e=2 \text{ steps}/s \\ & 2\times 25 + 25e = 54 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 54 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 25 + 2 e = 22\times 22+2.25e \\ & e=2 \text{ steps}/s \\ & 2\times 25 + 25e = 54 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 54 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 1.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 1.75 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 26 + 1.5 e = 20\times 20+1.75e \\ & e=16 \text{ steps}/s \\ & 1.5\times 26 + 26e = 63 \text{ steps} \\ & \text{or } 1.75\times 20 + 20e = 63 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 26 + 1.5 e = 20\times 20+1.75e \\ & e=16 \text{ steps}/s \\ & 1.5\times 26 + 26e = 63 \text{ steps} \\ & \text{or } 1.75\times 20 + 20e = 63 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 26 + 1.75 e = 20\times 20+2e \\ & e=22 \text{ steps}/s \\ & 1.75\times 26 + 26e = 84 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 26 + 1.75 e = 20\times 20+2e \\ & e=22 \text{ steps}/s \\ & 1.75\times 26 + 26e = 84 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 20\times 20+2.5e \\ & e=4 \text{ steps}/s \\ & 2\times 26 + 26e = 60 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 60 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 20\times 20+2.5e \\ & e=4 \text{ steps}/s \\ & 2\times 26 + 26e = 60 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 60 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 20\times 20+2.25e \\ & e=28 \text{ steps}/s \\ & 2\times 26 + 26e = 108 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 108 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 20\times 20+2.25e \\ & e=28 \text{ steps}/s \\ & 2\times 26 + 26e = 108 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 108 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 26 + 2.5 e = 20\times 20+3e \\ & e=10 \text{ steps}/s \\ & 2.5\times 26 + 26e = 90 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 26 + 2.5 e = 20\times 20+3e \\ & e=10 \text{ steps}/s \\ & 2.5\times 26 + 26e = 90 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 26 + 2.25 e = 20\times 20+2.5e \\ & e=34 \text{ steps}/s \\ & 2.25\times 26 + 26e = 135 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 135 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 26 + 2.25 e = 20\times 20+2.5e \\ & e=34 \text{ steps}/s \\ & 2.25\times 26 + 26e = 135 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 135 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 26 + 3 e = 20\times 20+3.5e \\ & e=16 \text{ steps}/s \\ & 3\times 26 + 26e = 126 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 26 + 3 e = 20\times 20+3.5e \\ & e=16 \text{ steps}/s \\ & 3\times 26 + 26e = 126 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 26 + 1.75 e = 21\times 21+2e \\ & e=14 \text{ steps}/s \\ & 1.75\times 26 + 26e = 70 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 26 + 1.75 e = 21\times 21+2e \\ & e=14 \text{ steps}/s \\ & 1.75\times 26 + 26e = 70 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 21\times 21+2.25e \\ & e=19 \text{ steps}/s \\ & 2\times 26 + 26e = 90 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 21\times 21+2.25e \\ & e=19 \text{ steps}/s \\ & 2\times 26 + 26e = 90 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 26 + 2.5 e = 21\times 21+3e \\ & e=4 \text{ steps}/s \\ & 2.5\times 26 + 26e = 75 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 75 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 26 + 2.5 e = 21\times 21+3e \\ & e=4 \text{ steps}/s \\ & 2.5\times 26 + 26e = 75 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 75 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 26 + 3 e = 21\times 21+3.5e \\ & e=9 \text{ steps}/s \\ & 3\times 26 + 26e = 105 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 26 + 3 e = 21\times 21+3.5e \\ & e=9 \text{ steps}/s \\ & 3\times 26 + 26e = 105 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 105 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 26 + 1.75 e = 22\times 22+2e \\ & e=6 \text{ steps}/s \\ & 1.75\times 26 + 26e = 56 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 56 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 26 + 1.75 e = 22\times 22+2e \\ & e=6 \text{ steps}/s \\ & 1.75\times 26 + 26e = 56 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 56 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 22\times 22+2.25e \\ & e=10 \text{ steps}/s \\ & 2\times 26 + 26e = 72 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 22\times 22+2.25e \\ & e=10 \text{ steps}/s \\ & 2\times 26 + 26e = 72 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 26 + 2.25 e = 22\times 22+2.5e \\ & e=14 \text{ steps}/s \\ & 2.25\times 26 + 26e = 90 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 26 + 2.25 e = 22\times 22+2.5e \\ & e=14 \text{ steps}/s \\ & 2.25\times 26 + 26e = 90 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 26 + 3 e = 22\times 22+3.5e \\ & e=2 \text{ steps}/s \\ & 3\times 26 + 26e = 84 \text{ steps} \\ & \text{or } 3.5\times 22 + 22e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 26 + 3 e = 22\times 22+3.5e \\ & e=2 \text{ steps}/s \\ & 3\times 26 + 26e = 84 \text{ steps} \\ & \text{or } 3.5\times 22 + 22e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 26 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 23\times 23+2.25e \\ & e=1 \text{ steps}/s \\ & 2\times 26 + 26e = 54 \text{ steps} \\ & \text{or } 2.25\times 23 + 23e = 54 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 26 + 2 e = 23\times 23+2.25e \\ & e=1 \text{ steps}/s \\ & 2\times 26 + 26e = 54 \text{ steps} \\ & \text{or } 2.25\times 23 + 23e = 54 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 20\times 20+2e \\ & e=29 \text{ steps}/s \\ & 1.75\times 27 + 27e = 98 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 98 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 20\times 20+2e \\ & e=29 \text{ steps}/s \\ & 1.75\times 27 + 27e = 98 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 98 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 20\times 20+2.5e \\ & e=8 \text{ steps}/s \\ & 2\times 27 + 27e = 70 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 20\times 20+2.5e \\ & e=8 \text{ steps}/s \\ & 2\times 27 + 27e = 70 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 20\times 20+2.25e \\ & e=36 \text{ steps}/s \\ & 2\times 27 + 27e = 126 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 20\times 20+2.25e \\ & e=36 \text{ steps}/s \\ & 2\times 27 + 27e = 126 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 27 + 2.5 e = 20\times 20+3e \\ & e=15 \text{ steps}/s \\ & 2.5\times 27 + 27e = 105 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 27 + 2.5 e = 20\times 20+3e \\ & e=15 \text{ steps}/s \\ & 2.5\times 27 + 27e = 105 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 105 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 27 + 2.25 e = 20\times 20+3e \\ & e=1 \text{ steps}/s \\ & 2.25\times 27 + 27e = 63 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 63 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 27 + 2.25 e = 20\times 20+3e \\ & e=1 \text{ steps}/s \\ & 2.25\times 27 + 27e = 63 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 63 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 20\times 20+3.5e \\ & e=22 \text{ steps}/s \\ & 3\times 27 + 27e = 147 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 147 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 20\times 20+3.5e \\ & e=22 \text{ steps}/s \\ & 3\times 27 + 27e = 147 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 147 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 1.5 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 1.75 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 27 + 1.5 e = 21\times 21+1.75e \\ & e=15 \text{ steps}/s \\ & 1.5\times 27 + 27e = 63 \text{ steps} \\ & \text{or } 1.75\times 21 + 21e = 63 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 27 + 1.5 e = 21\times 21+1.75e \\ & e=15 \text{ steps}/s \\ & 1.5\times 27 + 27e = 63 \text{ steps} \\ & \text{or } 1.75\times 21 + 21e = 63 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 21\times 21+2e \\ & e=21 \text{ steps}/s \\ & 1.75\times 27 + 27e = 84 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 21\times 21+2e \\ & e=21 \text{ steps}/s \\ & 1.75\times 27 + 27e = 84 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 21\times 21+2.5e \\ & e=3 \text{ steps}/s \\ & 2\times 27 + 27e = 60 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 60 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 21\times 21+2.5e \\ & e=3 \text{ steps}/s \\ & 2\times 27 + 27e = 60 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 60 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 21\times 21+2.25e \\ & e=27 \text{ steps}/s \\ & 2\times 27 + 27e = 108 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 108 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 21\times 21+2.25e \\ & e=27 \text{ steps}/s \\ & 2\times 27 + 27e = 108 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 108 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 27 + 2.5 e = 21\times 21+3e \\ & e=9 \text{ steps}/s \\ & 2.5\times 27 + 27e = 90 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 27 + 2.5 e = 21\times 21+3e \\ & e=9 \text{ steps}/s \\ & 2.5\times 27 + 27e = 90 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 27 + 2.25 e = 21\times 21+2.5e \\ & e=33 \text{ steps}/s \\ & 2.25\times 27 + 27e = 135 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 135 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 27 + 2.25 e = 21\times 21+2.5e \\ & e=33 \text{ steps}/s \\ & 2.25\times 27 + 27e = 135 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 135 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 21\times 21+3.5e \\ & e=15 \text{ steps}/s \\ & 3\times 27 + 27e = 126 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 21\times 21+3.5e \\ & e=15 \text{ steps}/s \\ & 3\times 27 + 27e = 126 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 22\times 22+2e \\ & e=13 \text{ steps}/s \\ & 1.75\times 27 + 27e = 70 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 22\times 22+2e \\ & e=13 \text{ steps}/s \\ & 1.75\times 27 + 27e = 70 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 22\times 22+2.25e \\ & e=18 \text{ steps}/s \\ & 2\times 27 + 27e = 90 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 22\times 22+2.25e \\ & e=18 \text{ steps}/s \\ & 2\times 27 + 27e = 90 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 27 + 2.5 e = 22\times 22+3e \\ & e=3 \text{ steps}/s \\ & 2.5\times 27 + 27e = 75 \text{ steps} \\ & \text{or } 3\times 22 + 22e = 75 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 27 + 2.5 e = 22\times 22+3e \\ & e=3 \text{ steps}/s \\ & 2.5\times 27 + 27e = 75 \text{ steps} \\ & \text{or } 3\times 22 + 22e = 75 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 22\times 22+3.5e \\ & e=8 \text{ steps}/s \\ & 3\times 27 + 27e = 105 \text{ steps} \\ & \text{or } 3.5\times 22 + 22e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 22\times 22+3.5e \\ & e=8 \text{ steps}/s \\ & 3\times 27 + 27e = 105 \text{ steps} \\ & \text{or } 3.5\times 22 + 22e = 105 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 23\times 23+2e \\ & e=5 \text{ steps}/s \\ & 1.75\times 27 + 27e = 56 \text{ steps} \\ & \text{or } 2\times 23 + 23e = 56 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 27 + 1.75 e = 23\times 23+2e \\ & e=5 \text{ steps}/s \\ & 1.75\times 27 + 27e = 56 \text{ steps} \\ & \text{or } 2\times 23 + 23e = 56 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 23\times 23+2.25e \\ & e=9 \text{ steps}/s \\ & 2\times 27 + 27e = 72 \text{ steps} \\ & \text{or } 2.25\times 23 + 23e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 27 + 2 e = 23\times 23+2.25e \\ & e=9 \text{ steps}/s \\ & 2\times 27 + 27e = 72 \text{ steps} \\ & \text{or } 2.25\times 23 + 23e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 27 + 2.25 e = 23\times 23+2.5e \\ & e=13 \text{ steps}/s \\ & 2.25\times 27 + 27e = 90 \text{ steps} \\ & \text{or } 2.5\times 23 + 23e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 27 + 2.25 e = 23\times 23+2.5e \\ & e=13 \text{ steps}/s \\ & 2.25\times 27 + 27e = 90 \text{ steps} \\ & \text{or } 2.5\times 23 + 23e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 27 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 23\times 23+3.5e \\ & e=1 \text{ steps}/s \\ & 3\times 27 + 27e = 84 \text{ steps} \\ & \text{or } 3.5\times 23 + 23e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 27 + 3 e = 23\times 23+3.5e \\ & e=1 \text{ steps}/s \\ & 3\times 27 + 27e = 84 \text{ steps} \\ & \text{or } 3.5\times 23 + 23e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 1.75 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 28 + 1.5 e = 20\times 20+1.75e \\ & e=28 \text{ steps}/s \\ & 1.5\times 28 + 28e = 84 \text{ steps} \\ & \text{or } 1.75\times 20 + 20e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 28 + 1.5 e = 20\times 20+1.75e \\ & e=28 \text{ steps}/s \\ & 1.5\times 28 + 28e = 84 \text{ steps} \\ & \text{or } 1.75\times 20 + 20e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 20\times 20+2e \\ & e=36 \text{ steps}/s \\ & 1.75\times 28 + 28e = 112 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 112 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 20\times 20+2e \\ & e=36 \text{ steps}/s \\ & 1.75\times 28 + 28e = 112 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 112 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 20\times 20+2.25e \\ & e=8 \text{ steps}/s \\ & 1.75\times 28 + 28e = 63 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 63 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 20\times 20+2.25e \\ & e=8 \text{ steps}/s \\ & 1.75\times 28 + 28e = 63 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 63 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 20\times 20+2.5e \\ & e=12 \text{ steps}/s \\ & 2\times 28 + 28e = 80 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 80 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 20\times 20+2.5e \\ & e=12 \text{ steps}/s \\ & 2\times 28 + 28e = 80 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 80 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 20\times 20+2.25e \\ & e=44 \text{ steps}/s \\ & 2\times 28 + 28e = 144 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 144 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 20\times 20+2.25e \\ & e=44 \text{ steps}/s \\ & 2\times 28 + 28e = 144 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 144 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 20\times 20+3e \\ & e=20 \text{ steps}/s \\ & 2.5\times 28 + 28e = 120 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 120 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 20\times 20+3e \\ & e=20 \text{ steps}/s \\ & 2.5\times 28 + 28e = 120 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 120 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 20\times 20+2.5e \\ & e=52 \text{ steps}/s \\ & 2.25\times 28 + 28e = 180 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 180 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 20\times 20+2.5e \\ & e=52 \text{ steps}/s \\ & 2.25\times 28 + 28e = 180 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 180 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 20\times 20+3e \\ & e=4 \text{ steps}/s \\ & 2.25\times 28 + 28e = 72 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 20\times 20+3e \\ & e=4 \text{ steps}/s \\ & 2.25\times 28 + 28e = 72 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 20\times 20+3.5e \\ & e=28 \text{ steps}/s \\ & 3\times 28 + 28e = 168 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 168 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 20\times 20+3.5e \\ & e=28 \text{ steps}/s \\ & 3\times 28 + 28e = 168 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 168 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 21\times 21+2e \\ & e=28 \text{ steps}/s \\ & 1.75\times 28 + 28e = 98 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 98 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 21\times 21+2e \\ & e=28 \text{ steps}/s \\ & 1.75\times 28 + 28e = 98 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 98 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 21\times 21+2.5e \\ & e=7 \text{ steps}/s \\ & 2\times 28 + 28e = 70 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 21\times 21+2.5e \\ & e=7 \text{ steps}/s \\ & 2\times 28 + 28e = 70 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 21\times 21+2.25e \\ & e=35 \text{ steps}/s \\ & 2\times 28 + 28e = 126 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 21\times 21+2.25e \\ & e=35 \text{ steps}/s \\ & 2\times 28 + 28e = 126 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 21\times 21+3e \\ & e=14 \text{ steps}/s \\ & 2.5\times 28 + 28e = 105 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 21\times 21+3e \\ & e=14 \text{ steps}/s \\ & 2.5\times 28 + 28e = 105 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 105 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 21\times 21+3.5e \\ & e=21 \text{ steps}/s \\ & 3\times 28 + 28e = 147 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 147 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 21\times 21+3.5e \\ & e=21 \text{ steps}/s \\ & 3\times 28 + 28e = 147 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 147 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.5 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 1.75 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 28 + 1.5 e = 22\times 22+1.75e \\ & e=14 \text{ steps}/s \\ & 1.5\times 28 + 28e = 63 \text{ steps} \\ & \text{or } 1.75\times 22 + 22e = 63 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 28 + 1.5 e = 22\times 22+1.75e \\ & e=14 \text{ steps}/s \\ & 1.5\times 28 + 28e = 63 \text{ steps} \\ & \text{or } 1.75\times 22 + 22e = 63 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 22\times 22+2e \\ & e=20 \text{ steps}/s \\ & 1.75\times 28 + 28e = 84 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 22\times 22+2e \\ & e=20 \text{ steps}/s \\ & 1.75\times 28 + 28e = 84 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 22\times 22+2.5e \\ & e=2 \text{ steps}/s \\ & 2\times 28 + 28e = 60 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 60 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 22\times 22+2.5e \\ & e=2 \text{ steps}/s \\ & 2\times 28 + 28e = 60 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 60 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 22\times 22+2.25e \\ & e=26 \text{ steps}/s \\ & 2\times 28 + 28e = 108 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 108 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 22\times 22+2.25e \\ & e=26 \text{ steps}/s \\ & 2\times 28 + 28e = 108 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 108 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 22\times 22+3e \\ & e=8 \text{ steps}/s \\ & 2.5\times 28 + 28e = 90 \text{ steps} \\ & \text{or } 3\times 22 + 22e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 22\times 22+3e \\ & e=8 \text{ steps}/s \\ & 2.5\times 28 + 28e = 90 \text{ steps} \\ & \text{or } 3\times 22 + 22e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 22\times 22+2.5e \\ & e=32 \text{ steps}/s \\ & 2.25\times 28 + 28e = 135 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 135 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 22\times 22+2.5e \\ & e=32 \text{ steps}/s \\ & 2.25\times 28 + 28e = 135 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 135 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 22\times 22+3.5e \\ & e=14 \text{ steps}/s \\ & 3\times 28 + 28e = 126 \text{ steps} \\ & \text{or } 3.5\times 22 + 22e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 22\times 22+3.5e \\ & e=14 \text{ steps}/s \\ & 3\times 28 + 28e = 126 \text{ steps} \\ & \text{or } 3.5\times 22 + 22e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 23\times 23+2e \\ & e=12 \text{ steps}/s \\ & 1.75\times 28 + 28e = 70 \text{ steps} \\ & \text{or } 2\times 23 + 23e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 23\times 23+2e \\ & e=12 \text{ steps}/s \\ & 1.75\times 28 + 28e = 70 \text{ steps} \\ & \text{or } 2\times 23 + 23e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 23\times 23+2.25e \\ & e=17 \text{ steps}/s \\ & 2\times 28 + 28e = 90 \text{ steps} \\ & \text{or } 2.25\times 23 + 23e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 23\times 23+2.25e \\ & e=17 \text{ steps}/s \\ & 2\times 28 + 28e = 90 \text{ steps} \\ & \text{or } 2.25\times 23 + 23e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 23\times 23+3e \\ & e=2 \text{ steps}/s \\ & 2.5\times 28 + 28e = 75 \text{ steps} \\ & \text{or } 3\times 23 + 23e = 75 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 28 + 2.5 e = 23\times 23+3e \\ & e=2 \text{ steps}/s \\ & 2.5\times 28 + 28e = 75 \text{ steps} \\ & \text{or } 3\times 23 + 23e = 75 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 23 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 23\times 23+3.5e \\ & e=7 \text{ steps}/s \\ & 3\times 28 + 28e = 105 \text{ steps} \\ & \text{or } 3.5\times 23 + 23e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 28 + 3 e = 23\times 23+3.5e \\ & e=7 \text{ steps}/s \\ & 3\times 28 + 28e = 105 \text{ steps} \\ & \text{or } 3.5\times 23 + 23e = 105 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 24\times 24+2e \\ & e=4 \text{ steps}/s \\ & 1.75\times 28 + 28e = 56 \text{ steps} \\ & \text{or } 2\times 24 + 24e = 56 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 28 + 1.75 e = 24\times 24+2e \\ & e=4 \text{ steps}/s \\ & 1.75\times 28 + 28e = 56 \text{ steps} \\ & \text{or } 2\times 24 + 24e = 56 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 24\times 24+2.25e \\ & e=8 \text{ steps}/s \\ & 2\times 28 + 28e = 72 \text{ steps} \\ & \text{or } 2.25\times 24 + 24e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 28 + 2 e = 24\times 24+2.25e \\ & e=8 \text{ steps}/s \\ & 2\times 28 + 28e = 72 \text{ steps} \\ & \text{or } 2.25\times 24 + 24e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 28 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 24 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 24\times 24+2.5e \\ & e=12 \text{ steps}/s \\ & 2.25\times 28 + 28e = 90 \text{ steps} \\ & \text{or } 2.5\times 24 + 24e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 28 + 2.25 e = 24\times 24+2.5e \\ & e=12 \text{ steps}/s \\ & 2.25\times 28 + 28e = 90 \text{ steps} \\ & \text{or } 2.5\times 24 + 24e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 1.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 29 + 1.5 e = 20\times 20+2e \\ & e=7 \text{ steps}/s \\ & 1.5\times 29 + 29e = 54 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 54 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 29 + 1.5 e = 20\times 20+2e \\ & e=7 \text{ steps}/s \\ & 1.5\times 29 + 29e = 54 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 54 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 20\times 20+2e \\ & e=43 \text{ steps}/s \\ & 1.75\times 29 + 29e = 126 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 20\times 20+2e \\ & e=43 \text{ steps}/s \\ & 1.75\times 29 + 29e = 126 \text{ steps} \\ & \text{or } 2\times 20 + 20e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 20\times 20+2.5e \\ & e=16 \text{ steps}/s \\ & 2\times 29 + 29e = 90 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 90 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 20\times 20+2.5e \\ & e=16 \text{ steps}/s \\ & 2\times 29 + 29e = 90 \text{ steps} \\ & \text{or } 2.5\times 20 + 20e = 90 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 20\times 20+2.25e \\ & e=52 \text{ steps}/s \\ & 2\times 29 + 29e = 162 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 162 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 20\times 20+2.25e \\ & e=52 \text{ steps}/s \\ & 2\times 29 + 29e = 162 \text{ steps} \\ & \text{or } 2.25\times 20 + 20e = 162 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 29 + 2.5 e = 20\times 20+3e \\ & e=25 \text{ steps}/s \\ & 2.5\times 29 + 29e = 135 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 135 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 29 + 2.5 e = 20\times 20+3e \\ & e=25 \text{ steps}/s \\ & 2.5\times 29 + 29e = 135 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 135 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 29 + 2.25 e = 20\times 20+3e \\ & e=7 \text{ steps}/s \\ & 2.25\times 29 + 29e = 81 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 81 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 29 + 2.25 e = 20\times 20+3e \\ & e=7 \text{ steps}/s \\ & 2.25\times 29 + 29e = 81 \text{ steps} \\ & \text{or } 3\times 20 + 20e = 81 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 20 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 29 + 3 e = 20\times 20+3.5e \\ & e=34 \text{ steps}/s \\ & 3\times 29 + 29e = 189 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 189 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 29 + 3 e = 20\times 20+3.5e \\ & e=34 \text{ steps}/s \\ & 3\times 29 + 29e = 189 \text{ steps} \\ & \text{or } 3.5\times 20 + 20e = 189 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 1.5 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 1.75 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 29 + 1.5 e = 21\times 21+1.75e \\ & e=27 \text{ steps}/s \\ & 1.5\times 29 + 29e = 84 \text{ steps} \\ & \text{or } 1.75\times 21 + 21e = 84 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.5 \times 29 + 1.5 e = 21\times 21+1.75e \\ & e=27 \text{ steps}/s \\ & 1.5\times 29 + 29e = 84 \text{ steps} \\ & \text{or } 1.75\times 21 + 21e = 84 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 21\times 21+2e \\ & e=35 \text{ steps}/s \\ & 1.75\times 29 + 29e = 112 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 112 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 21\times 21+2e \\ & e=35 \text{ steps}/s \\ & 1.75\times 29 + 29e = 112 \text{ steps} \\ & \text{or } 2\times 21 + 21e = 112 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 21\times 21+2.25e \\ & e=7 \text{ steps}/s \\ & 1.75\times 29 + 29e = 63 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 63 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 21\times 21+2.25e \\ & e=7 \text{ steps}/s \\ & 1.75\times 29 + 29e = 63 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 63 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 21\times 21+2.5e \\ & e=11 \text{ steps}/s \\ & 2\times 29 + 29e = 80 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 80 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 21\times 21+2.5e \\ & e=11 \text{ steps}/s \\ & 2\times 29 + 29e = 80 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 80 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 21\times 21+2.25e \\ & e=43 \text{ steps}/s \\ & 2\times 29 + 29e = 144 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 144 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 21\times 21+2.25e \\ & e=43 \text{ steps}/s \\ & 2\times 29 + 29e = 144 \text{ steps} \\ & \text{or } 2.25\times 21 + 21e = 144 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 29 + 2.5 e = 21\times 21+3e \\ & e=19 \text{ steps}/s \\ & 2.5\times 29 + 29e = 120 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 120 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 29 + 2.5 e = 21\times 21+3e \\ & e=19 \text{ steps}/s \\ & 2.5\times 29 + 29e = 120 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 120 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 29 + 2.25 e = 21\times 21+2.5e \\ & e=51 \text{ steps}/s \\ & 2.25\times 29 + 29e = 180 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 180 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 29 + 2.25 e = 21\times 21+2.5e \\ & e=51 \text{ steps}/s \\ & 2.25\times 29 + 29e = 180 \text{ steps} \\ & \text{or } 2.5\times 21 + 21e = 180 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2.25 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 29 + 2.25 e = 21\times 21+3e \\ & e=3 \text{ steps}/s \\ & 2.25\times 29 + 29e = 72 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 72 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.25 \times 29 + 2.25 e = 21\times 21+3e \\ & e=3 \text{ steps}/s \\ & 2.25\times 29 + 29e = 72 \text{ steps} \\ & \text{or } 3\times 21 + 21e = 72 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 3 seconds. Debdeep walks up the escalator at a constant rate of 21 steps per second, and arrives at the third floor after 3.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 29 + 3 e = 21\times 21+3.5e \\ & e=27 \text{ steps}/s \\ & 3\times 29 + 29e = 168 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 168 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 3 \times 29 + 3 e = 21\times 21+3.5e \\ & e=27 \text{ steps}/s \\ & 3\times 29 + 29e = 168 \text{ steps} \\ & \text{or } 3.5\times 21 + 21e = 168 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 1.75 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 22\times 22+2e \\ & e=27 \text{ steps}/s \\ & 1.75\times 29 + 29e = 98 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 98 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 1.75 \times 29 + 1.75 e = 22\times 22+2e \\ & e=27 \text{ steps}/s \\ & 1.75\times 29 + 29e = 98 \text{ steps} \\ & \text{or } 2\times 22 + 22e = 98 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.5 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 22\times 22+2.5e \\ & e=6 \text{ steps}/s \\ & 2\times 29 + 29e = 70 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 70 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 22\times 22+2.5e \\ & e=6 \text{ steps}/s \\ & 2\times 29 + 29e = 70 \text{ steps} \\ & \text{or } 2.5\times 22 + 22e = 70 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 2.25 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 22\times 22+2.25e \\ & e=34 \text{ steps}/s \\ & 2\times 29 + 29e = 126 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 126 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2 \times 29 + 2 e = 22\times 22+2.25e \\ & e=34 \text{ steps}/s \\ & 2\times 29 + 29e = 126 \text{ steps} \\ & \text{or } 2.25\times 22 + 22e = 126 \text{ steps} \end{align*}
A mall escalator moves upwards at a constant rate from the 1st to 3rd floor. Chiranjit walks up the escalator at a constant rate of 29 steps per second, and arrives at the third floor after 2.5 seconds. Debdeep walks up the escalator at a constant rate of 22 steps per second, and arrives at the third floor after 3 seconds. How many steps are there on the escalator?
Sorry. Please check the correct answer below.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 29 + 2.5 e = 22\times 22+3e \\ & e=13 \text{ steps}/s \\ & 2.5\times 29 + 29e = 105 \text{ steps} \\ & \text{or } 3\times 22 + 22e = 105 \text{ steps} \end{align*}
Yay! Your are right.
Let the speed of escalator be $e$ \begin{align*} & 2.5 \times 29 + 2.5 e = 22\times 22+3e \\ & e=13 \text{ steps}/s \\ & 2.5\times 29 + 29e = 105 \text{ steps} \\ & \text{or } 3\times 22 + 22e = 105 \text{ steps} \end{align*}
2025 © All Rights Reserved. Privacy Policy | Terms of Service
Select level
Select subject